当前位置: 首页 > news >正文

常用的python库-安装与使用

常用的python库函数

  • yield关键字
  • openslide库
    • openslide库的安装-linux
    • openslide的使用
    • openslide对象的常用属性
  • cv2库
  • numpy库
  • ASAP库-multiresolutionimageinterface库
    • ASAP库的安装
    • ASAP库的使用
  • concurrent.futures.ThreadPoolExecutor
  • xml.etree.ElementTree库
  • skimage库
  • PIL.Image库 PIL.Image.Image
  • detectron2库
    • 数据增强
    • MaskFormerSemanticDatasetMapper类:
    • MetadataCatalog类常见属性
  • faiss库-聚类

yield关键字

yield关键字:定义生成器函数。
生成器函数:允许在迭代过程中逐步生成值,而不是一次性返回所有值。
yield语句会暂停函数的执行,并返回一个值给调用者。下一次调用生成器的__next()__方法,函数会从暂停的地方继续执行。
生成器函数:节省内存,按需求生成值,而不是一次性将所有值加载到内存中。

openslide库

openslide库的安装-linux

很多虚拟环境都需要额外装openslide库,所以记录一下过程:

cd /home/liusn/00apps
conda activate 环境名
pip install openslide_bin-4.0.0.5-py3-none-manylinux_2_27_x86_64.whl
pip install openslide-python==1.3.1

在这里插入图片描述

openslide的使用

  1. openslide库是一个读取和操作显微镜图像的python库,支持.svs,.vms和.tiff等格式。
  2. 支持图像金字塔格式:在不同的分辨率下访问图像数据。
  3. 可以从原始图像中提取特定区域,不需要加载整个图像。
  4. 能够访问图像的元数据,如放大倍数、图像尺寸等。
import openslide  
# 打开显微镜图像 
slide = openslide.OpenSlide(wsi_path)  # 获取特定金字塔层级的图像尺寸 
# level从0开始,0表示最高分辨率 
# w, h表示指定层级的图像宽度和高度 
w, h = slide.level_dimensions[level]  # 获取level层的下采样比例 
# 下采样比例: 特定层级的像素大小与最高分辨率像素大小的比例关系 
# 如果下采样比例为(2,2), 图像的宽和高都被缩小为原来的1/2 
factor = slide.level_downsamples[level]  
# 从显微镜图像中读取指定区域 
# location: tuple, 左上角坐标; level: 金字塔层级 
# size: (w, h), 要读取的区域大小; 返回一个PIL对象 
image = slide.read_region(location, level, size)

openslide对象的常用属性

  • self.level_downsamples[level]:获取level层的下采样比例,相对于最高分辨率而言。
  • self.level_dimension[level]:level层的图像尺寸。

cv2库

import cv2  # 在图像上绘制多边形 
# img: 要在其上绘制的图像; pts: 一个包含多边形顶点的ndarray; 
# color: 填充的颜色, (255)表示白色 
cv2.fillPoly(img, pts, color)  # 在图像上绘制文本 
# img: 要绘制文本的图像; text: 要绘制的文本字符串 
cv2.putText(img, text)

numpy库

import numpy as np  
# 找到数组中满足条件的元组索引 
# condition: bool数组, 返回所有为True的行, 列索引 
X_idx, Y_idx = np.where(condition)  # 根据条件condition进行数组的元素选择和替换 
# condition为True时, 返回value1, 否则返回value2 inst_map = np.where(condition, value1, value2)  
# 将数组按行的方向堆叠起来 
# tup: 一个列表/元组, 返回一个新数组(总行数, 列数) 
# 总行数 = 所有输入数组的行数之和 np.vstack(tup)  
selected_x[..., 0:1] # ...表示前面所有的维度

ASAP库-multiresolutionimageinterface库

处理金字塔类型的数据结构。处理多分辨率图像的python库,适合医学图像和显微镜图像的分析。支持不同分辨率的访问与操作。

ASAP库的安装

安装ASAP linux(ubuntu18.04-A6000):https://www.freesion.com/article/4489476959/
安装ASAP linux(ubuntu22.04-4x3090)的安装步骤:

  • 在ASAP官网下载最新版:ASAP 2.2,适配ubuntu2204。
    在这里插入图片描述

  • 安装ASAP的依赖包:用sudo apt-get install 命令。apt-get install是用于命令行操作的软件包管理工具,该命令是安装软件包。

  • 离线安装ASAP的安装包:dpkg -i ASAP-2.2-Ubuntu2204.deb ,手动安装本地的deb文件。

  • 看ASAP安装的位置:dpkg -L asap 。

  • 把ASAP放入PYTHONPATH,然后可以import了。

PYTHONPATH="/opt/ASAP/bin":"${PYTHONPATH}" 
export PYTHONPATH

ASAP库的使用

ASAP库是一个C++写的软件,所以不能读源码。少量的python调用文档见:https://academic.oup.com/gigascience/article/7/6/giy065/5026175

ASAP官网:https://github.com/computationalpathologygroup/ASAP/releases

通过python 访问tif数据:
在这里插入图片描述
将XML注释数据转换为tif图像,假设注释里的多边形坐标是基于图像最高分辨率级别的。
在这里插入图片描述
示例代码:

import multiresolutionimageinterface as mir  # 创建图像接口 
reader = mir.MultiResolutionImageReader()  # 打开和加载多分辨率图像文件 
mr_image = reader.open(path) # 获取level 6的图像尺寸 level=2 
w, h = mr_image.getLevelDimensions(level) 
ds = mr_image.getLevelDownsample(level) # 从level 6获取一个patch, patch左上角的坐标为(0,0), 返回的tile是一个numpy对象 
tile = image.getUCharPatch(0, 0, w, h, 6) # 读取一个 300 像素宽、200 像素高的图像块,从level=2 的 (568, 732) XY 坐标开始 
# ds是下采样倍数, 在level=2的坐标乘以ds, 得到level=0的坐标 
tile = image.getUCharPatch(int(568 * ds), int(732 * ds), 300, 200, level)  
# 存储和管理多分辨率图像相关的注释数据 
annotation_list = mir.AnnotationList() 
# 将注释数据转换以xml格式存储 
xml_repository = mir.XmlRepository(annotation_list) 
# 设置or更新xml文件的源路径 xml_repository.setSource(path) 
# 从xml文件加载数据 xml_repository.load() 
# 将注释数据转换为二值掩码 
annotation_mask = mir.AnnotationToMask() 
# 将提供的注释annotation_list转换为二值掩码 
annotation_mask.convert(annotation_list, output_path,image_dimensions, image_spacing)

concurrent.futures.ThreadPoolExecutor

管理线程池并高效地执行多线程任务,可以加快I/O密集型任务的处理速度。通过提交任务来执行并发操作。

from concurrent.futures import ThreadPoolExecutor  # 创建对象, max_workers指定最大线程数, 如果没有指定, python根据系统的线程数进行调整 
executor = ThreadPoolExecutor(max_workers=3)  # 使用map()提交多个任务 
executor.map(task, range(5))  # 关闭线程池 
executor.shutdown(wait=True)

xml.etree.ElementTree库

解析和创建xml文档,用于读取、修改和生成xml。

import xml.etree.ElementTree as ET  # 从指定文件中读取xml数据, 并解析为一个树结构 ElementTree对象 
tree = ET.parse(annot_path)  # 获取根元素: xml文档最外层的元素 
root = tree.getroot()

skimage库

import skimage  # 生成多边形的像素坐标 
# x: 一维数组, 多边形的列坐标; y: 一维数组, 多边形的行坐标 
# shape: 指定输出坐标的图像形状 
# rows, cols: 多边形内部像素的行和列坐标 
# 多边形内部是指,所有的多边形都被填充好了 
rows, cols = skimage.draw.polygon(x, y, shape)

PIL.Image库 PIL.Image.Image

from PIL import Image  image = Image.open(path)  
# 查看image的mode和channel nums 
print(f"Image mode: {image.mode}") 
print(f"Number of channels: {len(image.getbands())}")  
# 转换mode mask = mask.convert("P")

detectron2库

数据增强

  1. 允许同时增强多种数据类型,如图像、边界框、掩码。
  2. 允许应用一系列静态声明的增强。
  3. 允许添加自定义新数据类型来增强,如旋转边界框、视频剪辑。
  4. 处理和操纵增强增强应用的operations。
    如何在编写新的数据加载器时使用增强,如何编写新的增强。

MaskFormerSemanticDatasetMapper类:

  1. 从file_name读取image
  2. 将几何变换应用到image和annotation
  3. 查找合适的cropping,将其应用于image和annotation
  4. 把image和annotation变成Tensors

MetadataCatalog类常见属性

  1. stuff_classes:每个stuff类别的名称list,用于语义分割和全景分割。
  2. stuff_colors:每个stuff类别的预定义颜色(0-255),用于可视化。如果没有指定,则使用随机颜色。list[tuple(r, g, b)].
  3. ignore_label:int,gt中带有该类别标签的像素将在评估里被忽略,用于语义和全景分割任务。

faiss库-聚类

Faiss库的使用:

  1. faiss索引包括:IndexFlatL2(小规模数据集)、IndexIVFFlat(大规模数据集)、IndexHNSW(高维数据)。
  2. 查询相似度 D, I = index.search(features, k)。对每个样本,查询与其他样本的相似度,D是距离矩阵,I是索引矩阵,返回每个样本的前k个最近邻。

相关文章:

常用的python库-安装与使用

常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…...

qt widget和qml界面集成到一起

将 Qt Widgets 和 QML 界面集成在一起可以利用 QQuickWidget 或 QQuickView。以下是基本步骤: 使用 QQuickWidget 创建 Qt Widgets 项目: 创建一个基于 Widgets 的应用程序。添加 QQuickWidget: 在你的窗口或布局中添加 QQuickWidget。 例如,可以在 QMainWindow 中使用: …...

mybatis 是否支持延迟加载?延迟加载的原理是什么?

1. MyBatis 是否支持延迟加载? 是的,MyBatis 支持延迟加载。延迟加载的主要功能是推迟数据加载的时机,直到真正需要时再去加载。这种方式能提高性能,尤其是在处理关系型数据时,可以避免不必要的数据库查询。 具体来说…...

MariaDB MaxScale实现mysql8主从同步读写分离

一、MaxScale基本介绍 MaxScale是maridb开发的一个mysql数据中间件,其配置简单,能够实现读写分离,并且可以根据主从状态实现写库的自动切换,对多个从服务器能实现负载均衡。 二、MaxScale实验环境 中间件192.168.121.51MaxScale…...

【图片转换PDF】多个文件夹里图片逐个批量转换成多个pdf软件,子文件夹单独合并转换,子文件夹单独批量转换,基于Py的解决方案

建筑设计公司在项目执行过程中,会产生大量的设计图纸、效果图、实景照片等图片资料。这些资料按照项目名称、阶段、专业等维度存放在多个文件夹和子文件夹中。 操作需求:为了方便内部管理和向客户交付完整的设计方案,公司需要将每个项目文件…...

基于logback+fastjson实现日志脱敏

一、需求背景 日常工作中,必不可免的会将一些敏感信息,如用户名、密码、手机号、身份证号、银行账号等等打印出来,但往往为了安全,这些信息都需要进行脱敏。脱敏实际就是用一些特殊字符来替换部分值。 JSON 和 JSONObject Fastj…...

13.10 统一配置管理中心:TranslationChain 架构的简洁配置管理方案

统一配置管理中心:TranslationChain 架构的简洁配置管理方案 1. 集中式配置文件设计 config/settings.yaml: # 多环境配置开关 env: production # development|test|production# 模型管理中心 models:openai:class: langchain_openai.ChatOpenAIparams...

deepseek大模型集成到idea

1 下载插件 安装CodeGPT打开 IntelliJ IDEA,鼠标点击左上角导航栏,File --> Setting 2 申请API key 3 配置deepseek 在 Settings 界面中的搜索框中,搜索 CodeGPT,路径 Tools --> CodeGPT --> Providers --> 如下一…...

Cocos2d-x 游戏开发-打包apk被默认自带了很多不必要的权限导致apk被报毒,如何在Cocos 2d-x中强制去掉不必要的权限-优雅草卓伊凡

Cocos2d-x 游戏开发-打包apk被默认自带了很多不必要的权限导致apk被报毒,如何在Cocos 2d-x中强制去掉不必要的权限-优雅草卓伊凡 实战操作 去除权限 要在 Cocos2d-x 开发的游戏中去掉 APK 自带权限,可以按照以下步骤操作: 编辑 AndroidMa…...

gitlab多项目流水线

背景是我有多个项目,希望其中一个项目被触发的时候,联动另外一个项目自动打包。然后我就看文档尝试操作了一下,所以有本文。 官方文档参考:https://gitlab.cn/docs/14.5/jh/ci/pipelines/multi_project_pipelines.html 不知道是不…...

GWO优化决策树回归预测matlab

灰狼优化算法(Grey Wolf Optimizer,简称 GWO)是一种群智能优化算法,由澳大利亚格里菲斯大学的 Mirjalii 等人于 2014 年提出。该算法的设计灵感源自灰狼群体的捕食行为,核心思想是模仿灰狼社会的结构与行为模式。 在本…...

2025影视泛目录站群程序设计_源码二次开发新版本无缓存刷新不变实现原理

1. 引言 本设站群程序计书旨在详细阐述苹果CMS泛目录的创新设计与实现,介绍无缓存刷新技术、数据统一化、局部URL控制及性能优化等核心功能,以提升网站访问速度和用户体验。 2. 技术概述 2.1 无缓存刷新技术 功能特点: 内容不变性&#x…...

在Linux上创建虚拟网卡

在 Linux 上创建虚拟网卡可以通过多种方式进行,常见的方式是使用 ip 命令来配置虚拟网卡。以下是一个简单的步骤指南,用于创建虚拟网卡: 步骤 1: 查看现有的网络接口 首先,查看当前网络接口的状态,可以使用以下命令&…...

JVM 类加载子系统在干什么?

JVM 类加载子系统是什么? 类加载子系统(Class Loader Subsystem)是 JVM 负责 加载、链接和初始化 .class 文件的组件。它的主要作用是将字节码文件加载进 JVM 并准备执行。 类加载器(ClassLoader)是 字节码的搬运工&…...

STM32的HAL库开发---高级定时器---互补输出带死区实验

一、互补输出简介 互补输出:OCx输出高电平,则互补通道OCxN输出低电平。OCx输出低电平,则互补通道OCxN输出高电平。 带死区控制的互补输出:OCx输出高电平时,则互补通道OCxN过一会再输出输出低电平。这个时间里输出的电…...

AntDesign X 报错:Cannot read properties of undefined (reading ‘_context‘)

解决: Cannot read properties of undefined (reading _context) 报错问题 我是基于umi的前端工程,react版本18.2, package.json,全部安装完之后的 "react": "^18.2.0", "ant-design/x": "^1…...

Day62_补20250210_图论part6_108冗余连接|109.冗余连接II

Day62_20250210_图论part6_108冗余连接|109.冗余连接II 108冗余连接 【把题意转化为并查集问题】 题目 有一个图,它是一棵树,他是拥有 n 个节点(节点编号1到n)和 n - 1 条边的连通无环无向图(其实就是一个线形图&am…...

06排序 + 查找(D2_查找(D1_基础学习))

目录 温故而知新 -------------------------------- 讲解一:基础理论 一、什么是查找 二、为什么需要查找 -------------------------------- 讲解二:代码学习 一、顺序查找 1. 算法原理 2. 算法步骤 3. Java代码实现 4. 适用场景 5. 知识小…...

SystemVerilog基础:disable fork语句

相关阅读 SystemVerilog基础https://blog.csdn.net/weixin_45791458/category_12517449.html?spm1001.2014.3001.5482 一、进程的概念 在学习disable fork语句之前,首先的了解SystemVerilog中的进程概念:进程是一系列可以独立执行的一个或多个表达式。…...

基于钉钉API的连接器实现:企业数据集成与自动化管理

文章目录 概要背景与需求钉钉API概述连接器实现小结 概要 在当今数字化时代,企业面临着海量数据的管理与整合挑战。钉钉作为国内广泛使用的办公协作平台,提供了丰富的API接口,支持企业进行数据集成与自动化管理。本文将介绍如何通过钉钉API实…...

windows server独立部署Qwen2.5-vl-7B

服务器配置信息 CPU:64G GPU:48G(RTX 4090) 一、使用conda下载模型 Qwen2.5-VL-7B-Instruct conda下载 conda create --name qwen python3.11 conda activate qwen 魔塔社区下载模型 pip install modelscope modelscope downl…...

nginx安装并部署前端项目【包括Linux与Windows系统】

nginx安装并部署前端项目 一、 nginx下载与安装二、 前端项目部署三、 常用命令&注意事项四、 常见问题【持续更新】 一、 nginx下载与安装 ① 下载地址:https://nginx.org/en/download.html ② 下载教程:根据不同操作系统(Linux或者Wi…...

pytest生成报告no tests ran in 0.01s

除了基本的环境配置、用例名要以test_开头,有个地方是我自己忽略了,在执行时没有指定用例文件,所以没有找到。 if __name__ __main__:pytest.main(["testcases/test_demo.py","-svq", __file__, --alluredir./allure-r…...

前后端服务配置

1、安装虚拟机(VirtualBox或者vmware),在虚拟机上配置centos(选择你需要的Linux版本),配置如nginx服务器等 1.1 VMware 下载路径Sign In注册下载 1.2 VirtualBox 下载路径https://www.virtualbox.org/wiki/Downloads 2、配置服…...

一文学会:用DeepSeek R1/V3 + AnythingLLM + Ollama 打造本地化部署的个人/企业知识库,无须担心数据上传云端的泄露问题

文章目录 前言一、AnythingLLM 简介&基础应用1.主要特性2.下载与安装3.配置 LLM 提供商4.AnythingLLM 工作区&对话 二、AnythingLLM 进阶应用:知识增强使用三、AnythingLLM 的 API 访问四、小结1.聊天模式2.本地存储&向量数据库 前言 如果你不知道Olla…...

[学习笔记] Kotlin Compose-Multiplatform

Compose-Multiplatform 原文:https://github.com/zimoyin/StudyNotes-master/blob/master/compose-multiplatform/compose.md Compose Multiplatform 是 JetBrains 为桌面平台(macOS,Linux,Windows)和Web编写Kotlin UI…...

202406 青少年软件编程等级考试C/C++ 三级真题答案及解析(电子学会)

第 1 题 谷歌的招聘 2004年7月,谷歌在硅谷的101号公路边竖立了一块巨大的广告牌用于招聘。内容超级简单,就是一个以.com 结尾的网址,而前面的网址是一个 10位素数,这个素数是自然常数e中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入…...

如何在Vue中实现事件处理

在Vue中,事件处理是一个核心概念,它让我们能够响应用户的操作,比如点击按钮、输入文本等。Vue提供了一个简洁而强大的方式来绑定事件和处理事件。本文将介绍如何在Vue中实现事件处理,覆盖事件绑定、事件修饰符以及事件处理函数等内…...

从零到一:基于Rook构建云原生Ceph存储的全面指南(下)

接上篇:《从零到一:基于Rook构建云原生Ceph存储的全面指南(上)》 链接: link 六.Rook部署云原生CephFS文件系统 6.1 部署cephfs storageclass cephfs文件系统与RBD服务类似,要想在kubernetes pod里使用cephfs&#…...

结合实际讲NR系列2—— SIB1

这是在基站抓取的sib1的一条信令 L3MessageContent BCCH-DL-SCH-Messagemessagec1systemInformationBlockType1cellSelectionInfoq-RxLevMin: -64q-QualMin: -19cellAccessRelatedInfoplmn-IdentityListPLMN-IdentityInfoplmn-IdentityListPLMN-IdentitymccMCC-MNC-Digit: 4MC…...

git rebase 和 git merge的区别

Rebase 可使提交树变得很干净, 所有的提交都在一条线上。 Merge 则是包含所有的调试记录,合并之后,父级的所有信息都会合并在一起 Rebase 修改了提交树的历史 比如, 提交 C1 可以被 rebase 到 C3 之后。这看起来 C1 中的工作是在 C3 之后进行的&#xf…...

JavaScript字符串类型详解

目录 一、创建字符串 1. 字面量方式 2. 使用 String 构造函数 二、字符串的不可变性 三、字符串的长度与索引 四、字符串的拼接 1. 使用加号 () 2. 使用模板字符串(ES6) 五、字符串的常用方法 1. 获取子串 substring(start, end) slice(start…...

Hdoop之MapReduce的原理

简单版本 AppMaster: 整个Job任务的核心协调工具 MapTask: 主要用于Map任务的执行 ReduceTask: 主要用于Reduce任务的执行 一个任务提交Job --> AppMaster(项目经理)--> 根据切片的数量统计出需要多少个MapTask任务 --> 向ResourceManager(Yarn平台的老大)索要资源 --…...

数据仓库和商务智能:洞察数据,驱动决策

在数据管理的众多领域中,数据仓库和商务智能(BI)是将数据转化为洞察力、支持决策制定的关键环节。它们通过整合、存储和分析数据,帮助组织更好地理解业务运营,预测市场趋势,从而制定出更明智的战略。今天&a…...

可视化工作流编排参数配置完整方案设计文档

​​​一、背景及需求分析 1. 背景 在复杂的工作流程中,后续程序需要动态构造输入参数,这些参数源自多个前序程序的 JSON 数据输出。为了增强系统的灵活性和可扩展性,配置文件需要支持以下功能: 灵活映射前序程序的 JSON 数据。…...

Linux sysfs虚拟文件系统

文章目录 简介sysfs接口sysfs和procfs参考 本文拟对Linux sysfs虚拟文件系统进行简单的介绍和原理分析 简介 测试环境:Linux dev-PC 5.18.17-amd64-desktop-hwe #20.01.00.10 SMP PREEMPT_DYNAMIC Thu Jun 15 16:17:50 CST 2023 x86_64 GNU/Linux sysfs虚拟文件系统…...

C++ 设计模式 - 访问者模式

一:概述 访问者模式将作用于对象层次结构的操作封装为一个对象,并使其能够在不修改对象层次结构的情况下定义新的操作。 《设计模式:可复用面向对象软件的基础》一书中的访问者模式因两个原因而具有传奇色彩:一是因为它的复杂性&a…...

微软编程之C#如何学习,C#学习路线:从入门到精通

引言 C# 是一种由微软开发的面向对象编程语言,广泛应用于 Windows 应用程序开发、游戏开发(Unity)、Web 开发(ASP.NET)等领域。对于初学者来说,掌握 C# 不仅能够打开编程世界的大门,还能为未来…...

PromptSource官方文档翻译

目录 核心概念解析 提示模板(Prompt Template) P3数据集 安装指南 基础安装(仅使用提示) 开发环境安装(需创建提示) API使用详解 基本用法 子数据集处理 批量操作 提示创建流程 Web界面操作 手…...

深入理解QT的View-Model-Delegate机制和用法

文章目录 Model-View-Delegate机制Model(数据模型)设置模型属性访问元素操作元素数据排序封装好的模型View(视图)显示数据数据选择Delegate(代理)数据选择易用封装类QListWidgetQTreeWidgetQTableWidget元素拖拽代理模型参考示例Model-View-Delegate机制 Qt的View/Model/Deleg…...

【JavaScript】JavaScript 运行原理

执行上下文 JavaScript引擎会在执行代码之前,会在堆内存中创建一个全局对像:Global Object(GO) 该对象所有的作用域(scope)都可以访问,在浏览器中这个对象就是window;里面会包含Date、Array、StringNumber、setTimeout、setInte…...

力扣hot100刷题第一天

哈希 1. 两数之和 题目 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。你可以按任意…...

数据结构-find()-判断字符串s1中是否包含字符串s2

find()库函数 #include <iostream> using namespace std;bool check(string s1,string s2){int n s1.size();int m s2.size();if(n0||m0 || n<m){return false;}if(s1.find(s2) ! string::npos){return true;}else{return false;} }int main () {string a "…...

寒假2.7

题解 web&#xff1a;[HCTF 2018]WarmUp 打开是张表情包 看一下源代码 访问source.php&#xff0c;得到完整代码 代码审计 <?phphighlight_file(__FILE__);class emmm{public static function checkFile(&$page){$whitelist ["source">"source.p…...

【韩顺平linux】部分上课笔记整理

整理一下一些韩顺平老师上课时候的笔记 课程&#xff1a;【小白入门 通俗易懂】韩顺平 一周学会Linux linux环境&#xff1a;使用阿里云服务器 笔记参考 &#xff1a; [学习笔记]2021韩顺平一周学会Linux 一、自定义函数 基本语法 应用实例&#xff1a; 计算两个参数的和…...

Linux proc虚拟文件系统

文章目录 简介proc常用节点pid节点procfs接口参考 简介 测试环境&#xff1a;Linux dev-PC 5.18.17-amd64-desktop-hwe #20.01.00.10 SMP PREEMPT_DYNAMIC Thu Jun 15 16:17:50 CST 2023 x86_64 GNU/Linux proc虚拟文件系统是linux内核提供的一种让用户和内核内部数据结构进行交…...

IDEA中常见问题汇总

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…...

Spring Security 学习大纲

Spring Security 系统学习大纲 一、基础入门 Spring Security 概述 安全框架的核心功能&#xff08;认证、授权、攻击防护&#xff09;核心组件&#xff1a;SecurityFilterChain, UserDetailsService, AuthenticationProvider, AccessDecisionManager与 Servlet 容器的集成原理…...

本地部署模型全攻略阶段二_3---Kiln AI

Kiln AI && Ollma && DeepSeek Kil AI:简单介绍与入门教程Kiln AI简介核心功能优势与特点二、Kiln AI安装步骤下载安装创建项目和任务使用界面Fine Tuning三、资源与支持Kil AI:简单介绍与入门教程 Kiln AI简介 简述Kiln AI是什么 Kiln AI是一款开源的AI开发…...

从零开始:使用Jenkins实现高效自动化部署

在这篇文章中我们将深入探讨如何通过Jenkins构建高效的自动化部署流水线&#xff0c;帮助团队实现从代码提交到生产环境部署的全流程自动化。无论你是Jenkins新手还是有一定经验的开发者&#xff0c;这篇文章都会为你提供实用的技巧和最佳实践&#xff0c;助你在项目部署中走得…...