python卷积神经网络人脸识别示例实现详解
目录
一、准备
1)使用pytorch
2)安装pytorch
3)准备训练和测试资源
二、卷积神经网络的基本结构
三、代码实现
1)导入库
2)数据预处理
3)加载数据
4)构建一个卷积神经网络
5)模型训练
6)模型测试
四、测试结果
五、模型导出
1)保存模型的状态参数
2)保存完整模型
六、总结
一、准备
1)使用pytorch
为什么建议使用pytorch来构建卷积神经网络呢?因为pytorch是基于python开发的一个神经网络工具包,它已经实现了激活函数定义、权重矩阵定义、卷积计算、正向传播、反向传播、权重矩阵更新等神经网络的基本操作,而不需要我们再去编写代码实现这些功能,只需调用相应的函数就可以搭建好我们所需的网络结构。pytorch极大方便了我们构建神经网络,加快了神经网络开发速度,我们只需要关注网络的结构层次,而不用关心所建立的网络具体训练和预测过程。
2)安装pytorch
pytorch有CPU版和GPU版,GPU版需要使用到英伟达的显卡来加快网络速度,安装过程也稍显复杂。本文重点是对python卷积神经网络示例解析,因此安装CPU版。在pycharm开发工具的终端中直接执行命令:pip install torch torchvision torchaudio,即可完成pytorch的CPU版本安装。
3)准备训练和测试资源
因为使用pytorch开发卷积神经网络实现人脸识别,pytorch对数据存放有一定要求,因此需要将相关资源放在特定的目录结构下。训练目录和测试目录结构如下图所示,在文件夹中放入相应的图片资源即可。文件路径可以自行定义,但是同一个人的照片必须放在同一个文件夹下,pytorch根据该文件夹的名称自动将相应的图片资源归于一类。
二、卷积神经网络的基本结构
一个简单的卷积神经网络包括输入层、卷积层、池化层、扁平化层和全连接层。网络的复杂度体现在卷积、池化层的大小和数量上。卷积神经网络主要用于处理有大量数据输入的情景,如图像识别是最好的例子,可以极大减少运算量。下面以一个人脸识别的实际例子,详细讲解卷积神经网络的搭建流程。
三、代码实现
1)导入库
使用PyCharm工具新建一个.py文件,在文件中导入下面需要使用到的相关库。在导入下面的库前,需要确保已经安装好了pytorch相关依赖包。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
2)数据预处理
以下定义了一组针对图片进行预处理的方法,包括3个。第一个是将图像调整为100*100像素大小,这样我们就可以输入任何大小图片,并能保证数据输入到网络中的大小是一致的。第二个是将图像数据转换为张量格式,这时pytorch自定义的一种数据格式,可以简单理解为类似于多维向量。第三个是对图像进行归一化处理,其目的是使数据的均值为 0,标准差为 1。这样做可以加速模型的训练过程,提高模型的稳定性和收敛速度。函数参数如下:
-
mean
:一个长度为 3 的列表,分别代表图像三个通道(RGB)的均值。这里[0.485, 0.456, 0.406]
是在 ImageNet 数据集上统计得到的三个通道的均值。 -
std
:一个长度为 3 的列表,分别代表图像三个通道(RGB)的标准差。[0.229, 0.224, 0.225]
是在 ImageNet 数据集上统计得到的三个通道的标准差。
参数的取值可以直接使用上面提供的经验值。对于输入图像的每个像素RGB值 ,归一化后的像素RGB值 按照以下公式计算:
其中,mean
和 std
分别是对应通道的均值和标准差。
transform = transforms.Compose([transforms.Resize((100, 100)), # 调整图像大小transforms.ToTensor(), # 将图像转换为张量transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 归一化
])
3)加载数据
使用dataset.ImageFolder()加载需要的训练图像和测试凸显数据。这里的数据路径需要注意,并没有到具体的文件名。比如在D:/zhaopian/train目录下,程序会自动读取该目录下的子文件夹,并将子文件夹中的图像数据归集到以该子文件夹命名的类别中。参数transform=transform就是调用上述第二步定义的数据预处理方法集,在读取每一张图像数据时将自动依次执行上述3个方法。并将最终转换好的数据返回。
创建数据加载器是为了便于网络训练时分批次加载数据,避免一次加载所有图像数据导致内存不足。
-
batch_size=32
:指定每个批次中包含的数据样本数量。这里设置为 32,表示每次从train_dataset
中取出 32 个样本组成一个批次进行训练。batch_size
的选择会影响模型的训练速度和性能,较大的batch_size
可以加快训练速度,但可能会导致内存不足;较小的batch_size
可以增加模型的泛化能力,但训练速度会变慢。 -
shuffle=True
:一个布尔值,用于指定是否在每个训练周期(epoch)开始时打乱数据集的顺序。设置为True
可以增加数据的随机性,避免模型学习到数据的特定顺序,有助于提高模型的泛化能力。
train_dataset = datasets.ImageFolder(root='D:/zhaopian/train', transform=transform)
test_dataset = datasets.ImageFolder(root='D:/zhaopian/test', transform=transform)
all_samples = test_dataset.samples
print("数据集中的类别:", train_dataset.classes)# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
4)构建一个卷积神经网络
自定义一个卷积神经网络类FaceCNN,继承自nn.Module。该网络包含两个卷积层,两个池化层,两个全连接层。在卷积层和全连接层之间均使用了相同的激活函数ReLU:
函数 nn.Conv2d(3, 16, kernel_size=3, padding=1) 的作用是定义一个二维卷积层,参数3表示输入的数据是3个通道,这里对应的是彩色图像的RGB三组数据,即每张图会有3个100*100的矩阵输入到该卷积层中。参数16表示该卷积层有16个卷积核,每个核的大小均是3*3(参数kernel_size=3确定的)的矩阵,这16个3*3的卷积核初始值是随机的,它的值是通过模型训练最终确定的,也就是神经网络中的权重矩阵。定义16个卷积核意味着什么呢?当一幅彩色图像输入该卷积层时,该图像有3组矩阵,每组矩阵与一个卷积核进行卷积,得到3个卷积后的矩阵,然后在将这3个卷积后的矩阵对应位置取平均值,得到一个最终的卷积均值矩阵。16个卷积核依次执行上述操作,则经过该卷积层后,会得到16个卷积均值矩阵。参数padding=1表示对输入数据进行扩充,1表示在数据四周加一行,填充的目的通常是为了保持输入和输出特征图的尺寸一致。那么,经过该卷积层后,最终会得到16个100*100的卷积均值矩阵。
函数nn.MaxPool2d(2)的作用是定义一个2*2的二维池化层,该池化层输出池中的最大值。在最大池化操作中,池化窗口会在输入特征图上滑动,对每个窗口内的元素进行操作。这里设置为 2,表示使用一个 2x2 的池化窗口。当池化窗口在特征图上滑动时,会选取每个 2x2 区域内的最大值作为该区域的输出值。此处需要注意的是,经过2*2的二维池化层后,输出的矩阵变为了50*50,因为池化层的步幅等于它的大小,这与卷积不同,卷积默认步幅为1。
函数nn.Conv2d(16, 32, kernel_size=3, padding=1) 用于定义第二个二维卷积层。在该卷积层中,前面两个参数分别是16和32,16对应的是前面的16个卷积核,因为一幅图像经过第一层卷积后会输出16组数据,所以此处第二层卷积时,输入的数据就是16组。32表示第二层卷积后输出32组50*50的矩阵。
函数nn.Linear(32 * 25 * 25, 128)的作用是定义一个全连接层,全连接层的每个神经元都与前一层的所有神经元相连接,通过对输入进行线性变换(加权求和)并加上偏置,实现从输入特征到输出特征的映射。第一个参数32 * 25 * 25=20000,表示输入数据的数量,128表示输出数据的数量。全连接层线性变换公式为:
其中, x是输入向量,W 是权重矩阵,b 是偏置向量, y是输出向量。权重矩阵W的形状为 (20000, 128)
, b的形状为 (128,1)
。W和b都是在模型训练中需要更新的矩阵。
在建立的神经网络中还定义了前向传播函数forward(),它由开发者自行设计数据在网络中传播的方向。图像数据首先经过第一个卷积层,然后通过激活函数,再进入第一个池化层,随后依次进入第二个卷积层,第二个激活函数,第二个池化层。x = x.view(-1, 32 * 25 * 25)的作用是将得到的数据展平为一维数据。从前面的输出可知,x是一组由32个25*25矩阵组成的数据集,x.view会将该数据集整合为一个一维数组,数组的元素总量保持不变。
数据在经过展平后,进入了第一全连接层,由网络结构可知,第一个全连接层输出的是一个128个元素的数组,数据量被极大压缩了。然后再次经过激活函数,随后进入第二个全连接层,第二个全连接层输出的数组由n个元素组成,n=len(train_dataset.classes),就是我们训练模型时提供的n个人数。但需要注意的是,此处输出的结果与人脸识别并无直接关系,我们需要对该结果进行进一步处理,让它与人脸对应起来。
class FaceCNN(nn.Module):def __init__(self):super(FaceCNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1) # 定义第一个二维卷积层self.relu1 = nn.ReLU() # 定义第一个激活函数self.pool1 = nn.MaxPool2d(2) # 定义第一个二维池化层self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1) # 定义第二个二维卷积层self.relu2 = nn.ReLU() # 定义第二个激活函数self.pool2 = nn.MaxPool2d(2) # 定义第二个二维池化层self.fc1 = nn.Linear(32 * 25 * 25, 128) # 定义第一个全连接层,展平后输出128个特征量self.relu3 = nn.ReLU() # 定义第三个激活函数self.fc2 = nn.Linear(128, len(train_dataset.classes)) # 定义第二个全连接层,展平后输出n个特征量,n为人数def forward(self, x):x = self.pool1(self.relu1(self.conv1(x)))x = self.pool2(self.relu2(self.conv2(x)))x = x.view(-1, 32 * 25 * 25)x = self.relu3(self.fc1(x))x = self.fc2(x)return x
5)模型训练
首先用自己定义卷积神经网络类实例化一个对象。然后定义一个损失函数,这里直接使用了pytorch库中提供的交叉熵损失函数对象,交叉熵损失函数(Cross-Entropy Loss)是分类问题中常用的一种损失函数,尤其适用于多分类任务。它能够有效衡量模型预测的概率分布与真实标签的概率分布之间的差异。该函数的具体实现比较复杂,如果不做算法研究,可以暂时不用管其具体实现,只需要知道在分类问题中适用该函数。
optimizer = optim.Adam(model.parameters(), lr=0.001)
这行代码在 PyTorch 中用于创建一个 Adam 优化器对象 optimizer
,该优化器将用于更新模型 model
的参数。Adam(Adaptive Moment Estimation)是一种常用的优化算法,它结合了 AdaGrad 和 RMSProp 两种算法的优点。Adam 算法能够自适应地调整每个参数的学习率,同时利用梯度的一阶矩估计(均值)和二阶矩估计(方差)来更新参数。它具有收敛速度快、对不同类型的数据集和模型都有较好表现等优点,因此在深度学习中得到了广泛应用。我们同样也不需要去关心它的具体实现,PyTorch已经帮我们完成了相应的操作。其中的参数定义如下:
-
model.parameters()
:这是optim.Adam
的第一个参数,它是一个生成器,用于返回模型model
中所有需要更新的参数。在 PyTorch 中,模型的参数通常是可学习的张量,通过调用model.parameters()
可以获取这些参数,优化器将根据这些参数的梯度信息来更新它们。 -
lr=0.001
:lr
是学习率(learning rate)的缩写,它是optim.Adam
的一个重要超参数,用于控制每次参数更新的步长。学习率决定了模型在训练过程中朝着损失函数最小值前进的速度。这里将学习率设置为 0.001,表示每次更新参数时,参数的变化量是梯度乘以 0.001。如果学习率设置得过大,模型可能会跳过损失函数的最小值,导致无法收敛;如果学习率设置得过小,模型的训练速度会变得很慢。
# 初始化模型
model = FaceCNN()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
num_epochs = 20 # 训练10次
for epoch in range(num_epochs):model.train() # 将模型设置为训练模式。running_loss = 0.0for i, (images, labels) in enumerate(train_loader):optimizer.zero_grad() # 每次反向传播之前,将优化器中所有参数的梯度清零outputs = model(images) # 自动调用模型的 forward 方法loss = criterion(outputs, labels) # 计算损失值loss.backward() # 调用 loss.backward() 开始反向传播过程,计算每个可训练参数的梯度,并将这些梯度存储在参数的 .grad 属性中。optimizer.step() # 优化器会根据存储在参数 .grad 属性中的梯度,按照指定的优化算法更新模型的参数。running_loss += loss.item()
6)模型测试
模型测试的代码实现如下。测试时首先将模型设置为评估模式,在这里同样使用批量传入测试图像数据的方式。
_, predicted = torch.max(outputs.data, 1)用于找出在模型输出的结果outputs.data中,每一行数据的最大值在该行中的索引位置,torch.max
函数的第二个参数,指定了在哪个维度上进行最大值查找。这里设置为 1
,表示在每一行(即每个样本)上查找最大值。需要进一步说明的是,由于我们采用批量处理的方式,outputs.data应是一个二维数组,每一行表示模型对一张图的处理结果。根据前面网络结构定义可知,若是输入3个人的人脸照片,则每一行应该有3个元素。这里取最大值,是因为模型输出的结果表征的是模型预测的概率,概率越大说明输入图像是对应人脸的概率越大。而对应的人脸在labels中表征,在本例中输入3个人的照片,则它是一个包含3个元素[0,1,2]的数组,每个值对应一个人。因此, torch.max找到最大值在每一行中的索引位置后,该位置也就表征了对应的人。
# 测试模型
model.eval() # 将模型切换到评估模式。
correct = 0
total = 0
with torch.no_grad(): # 不计算导数for index, (images, labels) in enumerate(test_loader):outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()labels_array = labels.numpy()predicted_array = predicted.numpy()# 计算当前批次的起始索引start_idx = index * test_loader.batch_size# 计算当前批次的结束索引end_idx = start_idx + images.size(0)# 获取当前批次的图像文件路径batch_samples = all_samples[start_idx:end_idx]# 提取图像文件名称batch_image_names = [sample[0].split('\\')[2] for sample in batch_samples]for i in range(len(predicted_array)):print(f'图名: {batch_image_names[i]}', f'实际名字: {train_dataset.classes[labels_array[i]]}',f'预测名字: {train_dataset.classes[predicted_array[i]]}')
print(f'总测试数量: {total}', f'正确识别数量: {correct}')
print(f'Test Accuracy: {100 * correct / total}%')
四、测试结果
从网络上随机下载了一些公开图片,对网路进行了训练和测试,得到结果如下。实际看神经网络的识别准确率还是比较高的。模型的完整代码和使用的资源可在这里下载。
五、模型导出
在完成神经网络模型训练后,需要将训练好的模型导出,以供后续使用,具体方法有两种。
1)保存模型的状态参数
在训练后的模型下加入下列代码,则模型中的所有参数均会保存到对应的.pth文件中。
torch.save(model.state_dict(), 'model_state_dict.pth')
在重新使用模型时,需要再次实例化模型对象,然后加载保存的模型参数。因此,重新使用时我们需要知道模型的结构定义,即重写FaceCNN类。
# 加载模型的状态字典
loaded_model = FaceCNN()
loaded_model.load_state_dict(torch.load('model_state_dict.pth'))
loaded_model.eval() # 设置为评估模式
2)保存完整模型
我们也可以直接保存完整的模型文件,在重新使用时直接加载该模型即可。这种方式简单,但缺少灵活性。
# 保存整个模型
torch.save(model, 'whole_model.pth')# 加载整个模型
loaded_model = torch.load('whole_model.pth')
loaded_model.eval() # 设置为评估模式
六、总结
通过一个人脸识别示例,详细说明了利用pytorch模块搭建卷积神经网络的实现流程,并对代码进行了逐行解释。pytorch极大方便了神经网络开发,让开发人员可以不用关注网络中具体的算法实现,而更加侧重在网络模型搭建上。在本例试验测试中,模型的训练次数和网络结构参数的调整均会对图像识别的准确造成大幅度影响,仍需要通过大量测试优化网络结构参数。
相关文章:
python卷积神经网络人脸识别示例实现详解
目录 一、准备 1)使用pytorch 2)安装pytorch 3)准备训练和测试资源 二、卷积神经网络的基本结构 三、代码实现 1)导入库 2)数据预处理 3)加载数据 4)构建一个卷积神经网络 5࿰…...
如何把邮件批量导出到本地
最近遇到邮箱满了的问题,需要把邮件批量导出到本地,然后清空邮箱。 问题是这个邮箱的官网,没有批量导出按钮,比较麻烦;总不能一封一封下载到本地,上万的。 找到了一个好用的工具,Mozilla Thun…...
C++智能指针的使用
文章目录 智能指针的使用和原理智能指针的使用场景RAII和智能指针C标准库智能指针的使用 智能指针的使用和原理 智能指针的使用场景 1. 下面的程序中,new了以后,我们也delete了,但是因为抛异常导致后面的delete没有得到执行,所以…...
Docker安装Redis
一、保证Docker提起来了 systemctl status docker想这没有启动要先启动一下 systemctl status docke二、拉取Redis(默认拉最新版) sudo docker pull redis检查一下拉成功没有 docker images三、创建相关目录 mkdir -p /home/redis/{conf,data}四、…...
深入理解MySQL索引底层数据结构
文章目录 前言一、MySQL索引是什么?二、索引的核心需求三、MySQL为什么选择BTree做为数据结构1.如果使用的是Hash 做为数据结构2.如果使用二叉树做为数据结构3.使用红黑树做为数据结构4.使用B-Tree做为数据结构5.BTree做为数据结构 4.BTree深度剖析结构特性与 B-Tre…...
udp和tcp的区别
目录 UDP 和 TCP 的区别 1. 连接性 2. 可靠性 3. 数据传输顺序 4. 流量控制和拥塞控制 5. 效率 6. 应用场景 UDP 和 TCP 的 C/C 代码实现区别 1. TCP 服务器端和客户端 TCP 服务器端(Server) TCP 客户端(Client) 2. U…...
VMware 虚拟机 ubuntu 20.04 扩容工作硬盘
一、关闭虚拟机 关闭虚拟机参考下图,在vmware 调整磁盘容量 二、借助工具fdisk testubuntu ~ $ df -h Filesystem Size Used Avail Use% Mounted on udev 1.9G 0 1.9G 0% /dev tmpfs 388M 3.1M 385M 1% /run /dev/sda5 …...
MapReduce是什么?
MapReduce 是一种编程模型,最初由 Google 提出,旨在处理大规模数据集。它是分布式计算的一个重要概念,通常用于处理海量数据并进行并行计算。MapReduce的基本思想是将计算任务分解为两个阶段:Map 阶段和 Reduce 阶段。 Map 阶段&a…...
跨越边界,大模型如何助推科技与社会的完美结合?
点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 概述 2024年,大模型技术已成为人工智能领域的焦点。这不仅仅是一项技术进步,更是一次可能深刻影响社会发展方方面面的变革。大模型的交叉能否推动技术与社会的真正融合?2025年…...
计算机毕业设计SpringBoot校园二手交易小程序 校园二手交易平台(websocket消息推送+云存储+双端+数据统计)(源码+文档+运行视频+讲解视频)
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
RK3568平台开发系列讲解(ConfigFS篇)ConfigFS核心数据结构
🚀返回专栏总目录 文章目录 一、数据结构二、结构体关系三、案例3.1、configfs_subsystem 实例3.2、config_group 实例化四、属性和方法五、config_item实例化沉淀、分享、成长,让自己和他人都能有所收获!😄 理解 ConfigFS 的核心数据结构对于深入使用和定制 ConfigFS 非…...
【04】RUST特性
文章目录 隐藏shadowing所有权ownership堆区&栈区所有权规则变量&数据Copy Trait与Drop TraitCopy TraitDrop Trait移动克隆函数参数与返回值的所有权参数引用可变引用悬垂引用slice生命周期隐藏shadowing 有点像同名覆盖 let mut guess = String::new();let guess: u3…...
c语言函数学习
C语言函数学习笔记:从入门到实践 一、什么是函数? 函数是C语言中用于封装特定功能的代码块,是模块化编程的核心。通过函数可以实现: 代码复用:避免重复编写相同逻辑 逻辑清晰:将复杂程序分解为多个小模块…...
LSTM的介绍
网上一些描述LSTM文章看的云里雾里,只是介绍LSTM 的结构,并没有说明原理。我这里用通俗易懂的话来描述一下。 我们先来复习一些RNN的核心公式: h t t a n h ( W h h t − 1 W x x t b h ) h_t tanh(W_h h_{t-1} W_x x_t b_h) httan…...
XML DOM
XML DOM XML DOM(Document Object Model)是一种用于访问和操作XML文档的标准方式。它提供了一种树形结构来表示XML文档,使得开发者能够方便地对XML数据进行读取、修改和操作。本文将详细介绍XML DOM的基本概念、结构、操作方法以及应用场景。 一、XML DOM的基本概念 XML …...
认识网络安全
一 网络攻击链 踩点-工具准备-载荷投递-漏洞利用-释放载荷-建立通道-目标达成 简化下: 目标侦察:准确识别目标,收集目标详细信息,比如 网络、 邮箱、员工、社会关系、对外提供服务、漏洞 信息等,为 后续攻击做准备。…...
华为支付-免密支付接入签约代扣场景开发步骤
一、预签约(服务器开发) 1.开发者按照商户模型调用预直连商户预签约或服务商预签约接口获取preSignNo构建签约信息参数contractStr。 为保证支付订单的安全性和可靠性需要对请求body和请求头PayMercAuth对象内的入参排序拼接进行签名。请参考排序拼接和…...
9.JVM-方法区
前言 这次所讲述的是运行时数据区的最后一个部分 从线程共享与否的角度来看 ThreadLocal:如何保证多个线程在并发环境下的安全性?典型应用就是数据库连接管理,以及会话管理 栈、堆、方法区的交互关系 下面就涉及了对象的访问定位 Person&a…...
【Linux Oracle】杂货铺 日常实用2024
1.跨服务器移动文件 passwd=^T^bxxxx `/usr/bin/expect <<-EOF set timeout -1 spawn scp -r ${BATCH_TIME} sxnhtc@192.168.3.x:${EXP_MCRO_DIR}/ expect "*password:" send "$passwd\r" interact expect eof EOF` curl -k -X GET https://192.16…...
深入理解指针初阶:从概念到实践
一、引言 在 C 语言的学习旅程中,指针无疑是一座必须翻越的高峰。它强大而灵活,掌握指针,能让我们更高效地操作内存,编写出更优化的代码。但指针也常常让初学者望而生畏,觉得它复杂难懂。别担心,本文将用通…...
Git 与 Git常用命令
Git 是一个开源的分布式版本控制系统,广泛用于源代码管理。与传统的集中式版本控制系统不同,Git 允许每个开发者在本地拥有完整的代码库副本,支持离线工作和高效的分支管理。每次提交时,Git 会对当前项目的所有文件创建一个快照&a…...
jupyterLab插件开发
jupyter lab安装、配置: jupyter lab安装、配置教程_容器里装jupyterlab-CSDN博客 『Linux笔记』服务器搭建神器JupyterLab_linux_布衣小张-腾讯云开发者社区 Jupyter Lab | 安装、配置、插件推荐、多用户使用教程-腾讯云开发者社区-腾讯云 jupyterLab插件开发教…...
IDEA+DeepSeek让Java开发起飞
1.获取DeepSeek秘钥 登录DeepSeek官网 : https://www.deepseek.com/ 进入API开放平台,第一次需要注册一个账号 进去之后需要创建一个API KEY,然后把APIkey记录保存下来 接着我们获取DeepSeek的API对话接口地址,点击左边的:接口…...
机器学习数学基础:19.线性相关与线性无关
一、线性相关与线性无关的定义 (一)线性相关 想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组 α ⃗ 1 , α ⃗ 2 , ⋯ , α ⃗ m \vec{\alpha}_1, \vec{\alpha}_2, \cdots, \vec{\alpha}_m α 1,α 2…...
快速集成DeepSeek到项目
DeepSeek API-KEY 获取 登录DeekSeek 官网,进入API 开放平台 2. 创建API-KEY 复制API-KEY进行保存,后期API调用使用 项目中集成DeepSeek 这里只展示部分核心代码,具体请查看源码orange-ai-deepseek-biz-starter Slf4j AllArgsConstructo…...
Rocketmq 和 Rabbitmq ,在多消费者的情况下,可以实现顺序消费吗
在多消费者的情况下,RocketMQ 和 RabbitMQ 都可以实现顺序消费,但它们的实现机制和适用场景有所不同。以下是对两者的详细分析和对比: 1. RocketMQ 的顺序消费 1.1 实现机制 顺序消息:RocketMQ 支持顺序消息(Orderly …...
linux下安装【流媒体】SRS之安装与使用
一、 安装srs 这个是一个流媒体服务器。 1.1 github 获取源码 git clone https://github.com/ossrs/srs.git 或者下载国内的 git clone https://gitee.com/ossrs/srs 进去之后下载zip的 #直接使用当前最新的6.0release版本 ,我下载的是zip的 下载了之后上传到…...
Qt QSettings用法
一、概述 QSettings类是Qt框架中的一个重要类,它主要用于存储和访问应用程序的设置和配置。 二、QSettings的构造方式 1、基于组织名和程序名的构造方式(主要用于Windows注册表) 1、explicit QSettings(const QString &organization,c…...
python学opencv|读取图像(六十)先后使用cv2.erode()函数和cv2.dilate()函数实现图像处理
【1】引言 前序学习进程中,先后了解了使用cv2.erode()函数和cv2.dilate()函数实现图像腐蚀和膨胀处理的效果,相关文章链接为: python学opencv|读取图像(五十八)使用cv2.erode()函数实现图像腐蚀处理-CSDN博客 pytho…...
【大数据安全分析】大数据安全分析技术框架与关键技术
在数字化时代,网络安全面临着前所未有的挑战。传统的网络安全防护模式呈现出烟囱式的特点,各个安全防护措施和数据相互孤立,形成了防护孤岛和数据孤岛,难以有效应对日益复杂多变的安全威胁。而大数据分析技术的出现,为…...
[笔记.AI]Deepseek-R1 各参数版本的蒸馏模型对比
备注:信息主要通过Deepseek-R1获得(查询近一个月的在线资料并整理),然后我进行了相应整合。如有错误,希望指出,谢谢。 Deepseek-R1 蒸馏模型 对比维度1.5B7B8B14B32B70B 特有的突破性能力▸ 毫秒级响应(0.3…...
JAVA面向对象2(三大特征)
面向对象的三大特征:封装、继承、多态 封装: 封装,英文单词Encapsulation。 从广义的角度来说,将一块经常要使用的代码片段,定义到方法中,是封装。将多个方法和多个状态数据定义到类体中,也是一…...
Spring Cloud工程完善
目录 完善订单服务 启动类 配置文件 实体类 Controller Service Mapper 测试运行 完成商品服务 启动类 配置文件 实体类 Controller Service Mapper 测试运行 远程调用 需求 实现 1.定义RestTemplate 2.修改order-service中的OrderService 测试运行 Rest…...
AI大模型随机初始化权重并打印网络结构方法(以Deepseekv3为例,单机可跑)
背景 当前大模型的权重加载和调用,主要是通过在HuggingFace官网下载并使用transformer的库来加以实现;其中大模型的权重文件较大(部分>100GB),若只是快速研究网络结构和数据流变化,则无需下载权重。本文…...
介绍下SpringBoot常用的依赖项
Spring Boot 是一个用于快速开发 Spring 应用程序的框架,它通过自动配置和依赖管理简化了开发过程。以下是一些 Spring Boot 项目中常用的依赖项: 1. Spring Boot Starter Web 作用: 用于构建 Web 应用程序,包括 RESTful 服务。依赖项: spr…...
第四节 docker基础之---dockerfile部署JDK
本地宿主机配置jdk 创建test目录: [rootdocker ~]# mkdir test 压缩包tomcat和jdk上传到root/test目录下: 本机部署Jdk 解压jdk: [rootdocker test]# tar -xf jdk-8u211-linux-x64.tar.gz [rootdocker test]# tar -xf apache-tomcat-8.5.…...
Vue基础:index.html、App.vue、main.js三个文件的联系
index.html、App.vue、main.js三个文件的联系 当vue项目npm run dev启动成功后, 浏览器就可以通过路径访问页面,那么这个页面到底展示的是哪个文件里的内容呢? 如果对前端vue有一定的基础知识,这篇文章可忽略。 在vue项目的目录结…...
数据库 绪论
目录 数据库基本概念 一.基本概念 1.信息 2.数据 3.数据库(DB) 4.数据库管理系统(DBMS) 5.数据库系统(DBS) 二.数据管理技术的发展 1.人工管理阶段 2.文件系统阶段 3.数据库系统阶段 4.数据库管…...
26~31.ppt
目录 26.北京主要的景点 题目 解析 27.创新产品展示及说明会 题目 解析 28.《小企业会计准则》 题目 解析 29.学习型社会的学习理念 题目 解析 30.小王-产品展示信息 题目 解析 31.小王-办公理念-信息工作者的每一天 题目 解析 26.北京主要的景点…...
AutoMQ 如何实现没有写性能劣化的极致冷读效率
前言 追赶读(Catch-up Read,冷读)是消息和流系统常见和重要的场景。 削峰填谷:对于消息来说,消息通常用作业务间的解耦和削峰填谷。削峰填谷要求消息队列能将上游发送的数据堆积住,让下游在容量范围内消费…...
启动gateway时Failed to configure a DataSource
问题 在启动网关时候启动失败,报错: 原因很明显,就是没有配制数据库连接信息 实际上是因为在网关模块中导入的某个依赖里面引入了MyBatis的依赖,导致启动的时候自动配置数据库源 但是在这个网关模块中是不需要数据数据库的 解决...
node 程序占用处理方法与后台运行方法
程序占用 如果你在关闭终端后重新运行 node server.js,但提示端口 3000 被占用,说明之前的服务器进程仍然在后台运行。以下是解决方法: 1. 检查后台运行的 Node.js 进程 首先,检查是否有 Node.js 进程正在占用端口 3000。 在 L…...
C# OpenCV机器视觉:对位贴合
在热闹非凡的手机维修街上,阿强开了一家小小的手机贴膜店。每天看着顾客们自己贴膜贴得歪歪扭扭,不是膜的边缘贴不整齐,就是里面充满了气泡,阿强心里就想:“要是我能有个自动贴膜的神器,那该多好啊…...
【计算机网络】TCP/IP 网络模型有哪几层?
目录 应用层 传输层 网络层 网络接口层 总结 为什么要有 TCP/IP 网络模型? 对于同一台设备上的进程间通信,有很多种方式,比如有管道、消息队列、共享内存、信号等方式,而对于不同设备上的进程间通信,就需要网络通…...
本地部署Deepseek R1
使用Ollama open-webui部署Deepseek R1 一、安装Ollama 官网地址:https://ollama.com/,点击下载按钮选择windows版本。并安装 打开命令提示符输入ollama,出现一下提示命令表示ollama安装完成 二、使用Ollama下载deepseek R1不同模型 打开o…...
PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架
源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发,可以打包成APP(非H5封壳)H5,接其他平台支付通道,前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG,修复无…...
[Do374]ansible-nagivator考前整理
[Do374]ansible-nagivator考前整理 1. Ansible-Navigator 升级后的变化1.1 主要变化1.2 重大改变 2. ansible主要配置文件2.1 .ansible-navigator.yml2.2 ansible.cnf 3. 常用模块3.1 file模块3.2 copy模块3.3 user模块和lookup模块3.4 yum和yum_repository模块3.5 systemd和se…...
deepseek+kimi自动生成ppt
打开deepseek官网,输入详细的需求,让他生成个ppt 接着deepseek开始思考生成了 接着复制生成了的内容 打开kimi粘贴刚才deepseek生成的内容 可以一键生成啦,下载编辑使用吧...
循环神经网络学习01——transformer:输入部分-嵌入层位置编码
一、介绍 1、核心思想 利用自注意力机制来捕获输入序列中各元素之间的全局依赖关系,无论这些元素之间的实际距离有多远。 自注意力机制:允许模型在处理序列的每个元素时,考虑到序列中的所有其他元素,从而捕捉它们之间的关系和依…...
centos系统清理docker日志文件
在CentOS系统中,Docker日志文件的不断增长可能会占用大量磁盘空间,影响系统性能和正常运行。为了保持系统的健康状态,需要定期清理Docker日志文件。本文将详细介绍如何在CentOS系统上清理Docker日志文件的具体步骤和方法。 Docker日志文件位…...