当前位置: 首页 > news >正文

DFS+回溯+剪枝(深度优先搜索)——搜索算法

        DFS也就是深度优先搜索,比如二叉树的前,中,后序遍历都属于DFS。其本质是递归,要学好DFS首先需要掌握递归。接下来咱们就一起来学习DFS涉及的算法。

一、递归

1.什么是递归?

递归可以这样理解把它拆分出来,两个字,“递”和“归”
递推这就需要找到递推公式
回归需要找到回归条件,递推过程逐渐逼近回归条件

直白一点来说就是,一个函数自己调用自己的情况,当然一定是要能够返回的。

二叉树的遍历,快排,归并中都用到了递归。

2.什么时候使用递归?

        满足以下条件通常都能使用递归解决:在主问题中能找到相同的子问题,在子问题中又能找到相同的子问题。

        注意:递归过程,也就是在前一个函数没有销毁的时候调用下一个相同函数,调用函数就需要开辟函数栈帧,会占用大量空间,所以递归层数太多会导致栈溢出,解决不了问题。

        缺点:递归算法会占用大量内存,有栈溢出的风险,在实际开发中要尽量减少递归算法的使用。

        优点:递归算法简单明了,容易被想到,代码也是非常的好写。

3.如何理解递归?

        在开始学递归时还是需要去分析递归展开细节图的,这个可以让我们理解递归的工作原理,理解为什么递归能解决问题。当我们在逻辑上有了自洽后。就再也不要去管递归展开图,如果一味地去纠结递归展开图,只会让我们越来越晕。

        相反,我们需要从宏观的角度看待递归问题,把递归函数看作一个黑盒并且相信这个黑盒一定能够帮我们完成任务。

4.如何写好递归?

写好递归只需要做好下面这几步:

  • 1.找到相同的子问题 --> 解决函数头的设计。
  • 2.只关心某个子问题是如何解决的 --> 解决函数体的书写。
  • 3.处理递归函数的出口 --> 返回值的确定。

        我们可以知道相同的子问题中的“相同”指的是逻辑相同,而不同的只有操作对象,所以在设计函数头的参数列表时只需要让这些不同的操作对象能够参入即可。

所以我们做这样一个函数头:

void _hanota(vector<int>& A, vector<int>& B, vector<int>& C,int n);

表示把A柱中n个盘子移动到C柱,B是辅助用的柱子。

        提示:这里大家可能会有一个疑惑,为什么传入的参数是几个盘子,而不是哪几个盘子。其实是因为游戏规则本来就是只能从上往下依次从柱子取盘。 所以知道要取一个盘子也就能确定哪几个盘子,它们是一对一的关系。

单个子问题的解决我放在代码中讲解,如下:

class Solution {
public:void _hanota(vector<int>& A, vector<int>& B, vector<int>& C,int n){if(n==1)//只需要移动一个盘的时候直接操作{C.push_back(A.back());A.pop_back();return;}//先把A中n-1个盘移动到B中_hanota(A,C,B,n-1);//在把剩下一个盘移动到C中C.push_back(A.back());A.pop_back();//最后再把B中的n-1个盘移动到C中_hanota(B,A,C,n-1);}void hanota(vector<int>& A, vector<int>& B, vector<int>& C) {//题目通过的参数列表无法满足我们的需求,重写一个函数来解决。_hanota(A,B,C,A.size());}
};

二、记忆化搜索(记忆递归)

通过下面这个题我会引出记忆化搜索。

以上是一个爬楼梯问题,我们通过找规律来解决问题。

楼顶数:1        2        3        4        5        6

方法数:1        2        3        5        8        13

通过观察发现楼顶数x与方法数F( x )的关系为

出现这样一个递推公式我们第一想到的就是递归来实现。

1.递归代码:

int F(int n)
{if(n<=2) return n;else return F(n-1)+F(n-2);
}

注意:这里为了方便说明问题函数名我直接使用F,这和原题提供的函数名不一样。

下面是对以上代码的递归展开图进行剖析:

红线为递推过程,绿线为回归过程。

接下来是复杂度分析

时间复杂度为O(2^n),空间复杂度为O(n)

        通过观察我们发现出现很多重复计算的地方(图中画圈颜色相同的地方)如果减少这些重复计算的地方那么效率会提高很多。为了解决这个问题,我们想象一下,把每次计算的数据存起来,下次用到的时候就不用计算,直接返回。而这就是记忆递归。

2.记忆递归

int arr[46]={0};//通过题目确定数据范围
F(int n)
{if(n<=2) return n;if(arr[n]!=0) return arr[n];else return arr[n]=F(n-1)+F(n-2);
}

        创建一个数组并初始值为零,把每次返回的值存在数组里,这样可以避免重复计算,判断a[n]为非0则直接返回。时间复杂度为O(n),空间复杂度为O(n)。

通常能使用记忆递归解决的问题都能转化为动态规划,如下:

3.动态规划

int F(int n){int dp[46]={0};dp[1]=1,dp[2]=2;for(int i=3;i<n+1;i++)dp[i]=dp[i-1]+dp[i-2];return dp[n];
}

        把1到n,每个楼顶对应的方法数存入数组中,用前两个来计算后一个,直到推到n,此方法相比以上方法,减少了递归带来的内存申请,时间复杂度为O(n),空间复杂度为O(1)。

好题推荐:329. 矩阵中的最长递增路径 - 力扣(LeetCode)

三、回溯

        回溯又叫作“恢复现场”,它是基于递归的一种算法,是为了解决搜索时路径之间的信息互相干扰的问题。如下:

回溯的具体用法,我们来从下面这个题中感受。 

        在做搜索题的时候最重要的莫过于就是决策树的设计。如果决策树做得清晰明了,那么代码也就好写了。

        什么是决策树?在搜索过程中它抽象出来的必定是一棵树形结构,而这棵树是如何展开的,我们在设计展开逻辑的过程,也就是在做一颗决策树。如下:

class Solution {
public:vector<vector<int>> ret;//统计结果vector<int> path;//记录路径vector<vector<int>> subsets(vector<int>& nums){dfs(nums,0);return ret;}void dfs(vector<int>& nums,int pos){if(pos==nums.size())//即到达叶子节点{ret.push_back(path);return;}//不选该元素直接进入下一元素的选择dfs(nums,pos+1);//选择该元素并进入下一元素的选择path.push_back(nums[pos]);dfs(nums,pos+1);//函数退出之前先把该层的数据清除(回溯)path.pop_back();}
};

其实这里回溯思想就一句代码,即path.pop_back()。回溯就这么简单。

我们看一看没有回溯的决策树

这里以叶子节点3开始画回归路线蓝线:回归红线:递推

        我们可以看到如果不把[3]这一节点的信息清除的话它会把信息带到上一层,然后一直往下带,每一节点都不恢复现场,就会使每个节点都带上一个信息往回传,导致结果错误。所以回溯算法在很多场景都是至关重要的。

当然决策树并不是唯一的,每个人画的可能都不一样,比如还可以这样:

不同的决策树代码也是不同的,如下:

class Solution
{
public:vector<vector<int>> ret;vector<int> path;vector<vector<int>> subsets(vector<int>& nums){_subsets(nums,0);return ret;}void _subsets(const vector<int>& nums,int pos){ret.push_back(path);for(int i=pos;i<nums.size();i++){path.push_back(nums[i]);_subsets(nums,i+1);path.pop_back();//恢复现场}}
};

四、剪枝

        剪枝可以这么理解,如果我们已知某条枝干没有正确答案或某条枝干是错误的,那么我们就不进行搜索,这样可以减少不必要的搜索,提高效率。具体我们可以从题中感受。

这个题放在小学数学就是一个画树状图的题,我们直接开始吧。 

        如上这颗决策树,在一条路径中如果一个元素选过一次,那么下次就不能再选,需要把它剪掉。我们可以使用一个哈希表来记录某个元素是否出现过。但在该过程中同样需要注意“恢复现场”。

class Solution {
public:vector<int> path;vector<vector<int>> ret;int n;vector<vector<int>> permute(vector<int>& nums){n = nums.size();vector<bool> hash(n);dfs(nums,hash);return ret;}void dfs(vector<int>& nums,vector<bool>& hash){if(path.size()==n){ret.push_back(path);return;}for(int i=0;i<n;i++){if(hash[i]) continue;//剪枝hash[i]=true;path.push_back(nums[i]);dfs(nums,hash);hash[i]=false;path.pop_back();}}
};

同样的这里剪枝就一句代码,即 if(hash[i]) continue。剪枝就这么简单。 

五、综合试题 

1.N皇后

首先我们还是一样的试着把决策树画出来,如下: 

这样我们可以知道这个题解题框架。接下来就是处理如何剪枝的问题。

        题目要求一个棋子的横排,竖排,斜对角, 反斜对角都不能有其他棋子,那么这就好办,只需要使用4个哈希表来记录这些位置是否已有棋子,如果有那就不能放,直到遍历完所以格子还是无法将棋子放入,则该条路径行不通。

class Solution {
public:vector<vector<string>> ret;vector<string> path;vector<bool>  row,col,bias1,bias2;vector<vector<string>> solveNQueens(int n){row.resize(n,false),col.resize(n,false);bias1.resize(2*n-1,false),bias2.resize(2*n-1,false);for(int i=0;i<n;i++) path.push_back(string(n,'.'));dfs(0,n);return ret;}void dfs(int pos,int n){if(pos==n){ret.push_back(path);return;}for(int j=0;j<n;j++){//剪枝if(row[pos]||col[j]||bias1[pos+j]||bias2[n-pos+j-1]) continue;row[pos]=col[j]=bias1[pos+j]=bias2[n-pos+j-1]=true;path[pos][j]='Q';dfs(pos+1,n);//恢复现场(回溯)row[pos]=col[j]=bias1[pos+j]=bias2[n-pos+j-1]=false;path[pos][j]='.';}}
};

2.解数独 

        同样我们需要画出决策树,我们可以直接暴力搜索每一个空缺的位置,再在每一个空位暴力枚举每一个数字即可。如下:

        在此过程中我们需要注意剪枝与回溯的问题,为了检查数字的合法性,还需要我们记录每一行,每一列,每个3*3小方格中的某个数字是否出现过。所以需要3个哈希表。

由题可知行数列数都是固定的,为9行9列。

        所以可以用   bool row[9][10]     bool col[9][10]来作为哈希表记录某一行的某个数字是否出现过。

使用bool hash[3][3][10],来作为哈希表记录某一个3*3宫格的某个数字是否出现过。

代码示例:

class Solution
{
public:bool row[9][10],col[9][10],hash[3][3][10];void solveSudoku(vector<vector<char>>& board){//初始化哈希表for(int i=0;i<9;i++){for(int j=0;j<9;j++){if(board[i][j]=='.') continue;int key=board[i][j]-'0';row[i][key]=col[j][key]=hash[i/3][j/3][key]=true;}}dfs(board);}bool dfs(vector<vector<char>>& board){for(int i=0;i<9;i++){for(int j=0;j<9;j++){if(board[i][j]!='.') continue;for(int key=1;key<=9;key++){if(row[i][key]||col[j][key]||hash[i/3][j/3][key]) continue;//剪枝board[i][j]=key+'0';row[i][key]=col[j][key]=hash[i/3][j/3][key]=true;if(dfs(board)) return true;//剪枝//恢复现场board[i][j]='.';row[i][key]=col[j][key]=hash[i/3][j/3][key]=false;}return false;}}return true;}
};

好题推荐:

​​​​​​39. 组合总和 - 力扣(LeetCode)

22. 括号生成 - 力扣(LeetCode)

1219. 黄金矿工 - 力扣(LeetCode)

77. 组合 - 力扣(LeetCode)

相关文章:

DFS+回溯+剪枝(深度优先搜索)——搜索算法

DFS也就是深度优先搜索&#xff0c;比如二叉树的前&#xff0c;中&#xff0c;后序遍历都属于DFS。其本质是递归&#xff0c;要学好DFS首先需要掌握递归。接下来咱们就一起来学习DFS涉及的算法。 一、递归 1.什么是递归&#xff1f; 递归可以这样理解把它拆分出来&#xff0…...

【数据结构】_堆的实现

目录 1. 堆的实现 1.1 Heap.h 1.2 Heap.c 1.3 Test_Heap.c 专栏前文中&#xff0c;已经介绍了入堆及向上调整算法&#xff0c;出堆及向下调整算法&#xff0c;详情见下文&#xff1a; 【数据结构】_堆的结构及向上、向下调整算法-CSDN博客文章浏览阅读352次&#xff0c;点…...

读书笔记《左耳听风》

读书笔记《左耳听风》 从今年开始&#xff0c;打算给自己定一下在看完书后整理成博客的计划。以往很多看完的书仅仅停留在看完&#xff0c;再回顾的时候总感觉已经不甚清晰了&#xff0c;希望能坚持下去。 《左耳听风》是今年我看完的第一本书&#xff0c;内容针对的是程序员…...

Axure原型图怎么通过链接共享

一、进入Axure 二、点击共享 三、弹出下面弹框&#xff0c;点击发布就可以了 发布成功后&#xff0c;会展示链接&#xff0c;复制即可共享给他人 四、发布失败可能的原因 Axure未更新&#xff0c;首页菜单栏点击帮助选择Axure更新&#xff0c;完成更新重复以上步骤即可...

本地部署DeepSeek,并使用UI界面进行快速交互

一.需要本地部署的原因 1.我们在deepseek的官网界面进行交互时&#xff0c;经常会出现如下问题&#xff0c;不能正常交互&#xff0c;很是困扰&#xff1a; 2.本地部署的好处 就是能够很流畅的与deepseek进行交互&#xff1b;也有缺点&#xff0c;现在官网交互的版本更高一点…...

ESP32S3读取数字麦克风INMP441的音频数据

ESP32S3 与 INMP441 麦克风模块的集成通常涉及使用 I2S 接口进行数字音频数据的传输。INMP441 是一款高性能的数字麦克风&#xff0c;它通过 I2S 接口输出音频数据。在 Arduino 环境中&#xff0c;ESP32S3 的开发通常使用 ESP-IDF&#xff08;Espressif IoT Development Framew…...

移动(新)魔百盒刷机教程[M301A_YS]

刚刚成功刷了一个坏的魔百盒&#xff0c;简单记录一下。 刷电视盒子有两种&#xff1a;卡刷和线刷。 线刷 一、线刷准备 1.刷机工具 Amlogic USB Burning Tool 晶晨线刷烧录工具 2.固件 根据盒子的型号、代工等找到对应的固件 二、线刷步骤 电脑打开下好的 Amlogic US…...

15 大 AWS 服务

在不断发展的云计算世界中&#xff0c;Amazon Web Services (AWS) 已成为一股主导力量&#xff0c;提供许多服务以满足各种应用程序开发、部署和管理方面的需求。本文将探讨 15 项 AWS 服务。这些服务对于构建可扩展、可靠且高效的系统至关重要。 1.Amazon EC2&#xff08;弹性…...

【C++】命名空间

&#x1f31f; Hello&#xff0c;我是egoist2023&#xff01; &#x1f30d; 种一棵树最好是十年前&#xff0c;其次是现在&#xff01; 目录 背景知识 命名空间(namespace) 为何引入namespace namespace的定义 namespace的使用 背景知识 C的起源要追溯到1979年&#xff0…...

项目实战(11)-双通道气体压力计V1.0

一. 产品简介&#xff1a; 1、项目背景是在实际应用中需要监控通道内气体的压力&#xff0c;压力计分为两个通道&#xff1b;通道一时实时监控&#xff1b;通道二是保压&#xff0c;设定保压值得上下限后通道内得气体压力值会一直保持在这个范围内。 二. 应用场景&#xff1a…...

python+unity落地方案实现AI 换脸融合

先上效果再说技术结论&#xff0c;使用的是自行搭建的AI人脸融合库&#xff0c;可以离线不受限制无限次生成&#xff0c;有需要的可以后台私信python ai换脸融合。 TODO 未来的方向&#xff1a;3D人脸融合和AI数据训练 这个技术使用的是openvcinsighface&#xff0c;openvc…...

开启对话式智能分析新纪元——Wyn商业智能 BI 携手Deepseek 驱动数据分析变革

2月18号&#xff0c;Wyn 商业智能 V8.0Update1 版本将重磅推出对话式智能分析&#xff0c;集成Deepseek R1大模型&#xff0c;通过AI技术的深度融合&#xff0c;致力于打造"会思考的BI系统"&#xff0c;让数据价值触手可及&#xff0c;助力企业实现从数据洞察到决策执…...

数据结构——【二叉树模版】

#思路 1、二叉树不同于数的构建&#xff0c;在树节点类中&#xff0c;有数据&#xff0c;左子结点&#xff0c;右子节点三个属性&#xff0c;在树类的构造函数中&#xff0c;添加了变量maxNodes&#xff0c;用于后续列表索引的判断 2.GetTreeNode()函数是常用方法&#xff0c;…...

DeepSeek之于心理学的一点思考

模型和硬件参数对应关系参考 模型参数规模 典型用途 CPU建议 GPU建议 最小内存建议 磁盘空间建议 适用场景 1.5b(15亿) 小型推理、轻量级任务 4核以上(Intel i5/AMD Ryzen5) 可选&#xff0c;入门级GPU(如NVIDIA GTX1650 4GB显存) 8GB 10GB以上SSD 小型NLP任务、文…...

mysql 存储过程和自定义函数 详解

首先创建存储过程或者自定义函数时&#xff0c;都要使用use database 切换到目标数据库&#xff0c;因为存储过程和自定义函数都是属于某个数据库的。 存储过程是一种预编译的 SQL 代码集合&#xff0c;封装在数据库对象中。以下是一些常见的存储过程的关键字&#xff1a; 存…...

数据结构:单链表

1.概念&#xff1a; 单链表&#xff08;Singly Linked List&#xff09;是一种常见的数据结构&#xff0c;它由一系列节点&#xff08;Node&#xff09;组成&#xff0c;每个节点包含两个部分&#xff1a; 数据域&#xff08;Data&#xff09;&#xff1a;存储节点的值或数据。…...

部署项目(ubantu服务器,配置jdk,启动项目,及测试)

目录 1、ubantu安装jdk 2、部署项目 ​ 解决 java -jar 报错&#xff1a;xxx.jar 中没有主清单属性 ​ 3、测试 4、查看系统部署的应用 1、ubantu安装jdk #压缩文件jdk文件&#xff1a;tar -czvf jdk17.tar.gz jdk17 #解压jdk文件&#xff1a;tar -xzvf jdk17.tar.gz 参…...

deepseek本地部署教程

第一步&#xff1a;进入Ollama官网 &#xff08;Download Ollama on macOS&#xff09;&#xff0c;下载ollama(注意需要Window10或更高的版本&#xff09;&#xff0c;安装&#xff08;OllamaSetup.exe&#xff09;&#xff0c;默认在c盘 第二步&#xff1a;点击Models,再点击…...

MySQL主从同步+binlog

一、简介 MySQL内建的复制功能是构建大型&#xff0c;高性能应用程序的基础 通过将MySQL的某一台主机&#xff08;master&#xff09;的数据复制到其他主机&#xff08;slaves&#xff09;上&#xff0c;并重新执行一遍来执行 复制过程中一台服务器充当主服务器&#xff0c;而…...

防火墙术语大全( Firewalld Glossary of Terms)

防火墙术语大全 防火墙作为网络安全中不可或缺的设备&#xff0c;在各种网络架构中扮演着至关重要的角色。无论是企业级防火墙、云防火墙还是家用路由器内置的防火墙&#xff0c;它们的工作原理和配置策略都离不开一系列专业术语的支撑。对于网络工程师来说&#xff0c;掌握这…...

LeetCode刷题---数组---697

数组的度 697. 数组的度 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 给定一个非空且只包含非负数的整数数组 nums&#xff0c;数组的 度 的定义是指数组里任一元素出现频数的最大值。 你的任务是在 nums 中找到与 nums 拥有相同大小的度的最短连续子数组&am…...

C语言基础08:运算符+流程控制总结

运算符 算术运算符 结果&#xff1a;数值 、-、*、\、%、&#xff08;正&#xff09;、-&#xff08;负&#xff09;、、-- i和i 相同点&#xff1a;i自身都会增1 不同点&#xff1a;它们运算的最终结果是不同的。i&#xff1a;先使用&#xff0c;后计算&#xff1b;i&am…...

[安装FlashAttention] CUDA版本 和 Nvidia驱动版本

nvidia-smi 查看driver api 的CUDA版本 听说这个是本机能装到的最高版本 那这样看来我最高能装到12.4。 nvcc -V 查看当前runtime api的CUDA版本 还是古老的11.5版本&#xff0c;没办法啊&#xff0c;FlashAttention老是说不支持&#xff1f; 安装Torch时选择的CUDA版本 p…...

Android图片加载框架Coil,Kotlin

Android图片加载框架Coil&#xff0c;Kotlin implementation("io.coil-kt:coil:1.4.0") import android.os.Bundle import android.widget.ImageView import androidx.appcompat.app.AppCompatActivity import androidx.lifecycle.lifecycleScope import coil.Coil i…...

Win11下搭建Kafka环境

目录 一、环境准备 二、安装JDK 1、下载JDK 2、配置环境变量 3、验证 三、安装zookeeper 1、下载Zookeeper安装包 2、配置环境变量 3、修改配置文件zoo.cfg 4、启动Zookeeper服务 4.1 启动Zookeeper客户端验证 4.2 启动客户端 四、安装Kafka 1、下载Kafka安装包…...

从大规模恶意攻击 DeepSeek 事件看 AI 创新隐忧:安全可观测体系建设刻不容缓

作者&#xff1a;羿莉&#xff08;萧羿&#xff09; 全球出圈的中国大模型 DeepSeek 作为一款革命性的大型语言模型&#xff0c;以其卓越的自然语言处理能力和创新性成本控制引领行业前沿。该模型不仅在性能上媲美 OpenAI-o1&#xff0c;而且在推理模型的成本优化上实现了突破…...

模拟(典型算法思想)—— OJ例题算法解析思路

目录 一、1576. 替换所有的问号 - 力扣(LeetCode) 运行代码: 1. 输入和输出 2. 变量初始化 3. 遍历字符串 4. 替换逻辑 5. 返回结果 整体分析 1. 思路总结 2. 为什么要这样设计 3. 时间复杂度与空间复杂度 4. 边界情况 二、495. 提莫攻击 - 力扣(LeetCode) …...

pgsql最快的数据导入BeginBinaryImport

PostgreSQL 的 BeginBinaryImport 是 libpq&#xff08;PostgreSQL 的 C 语言客户端库&#xff09; 中的一个函数&#xff0c;用于高效实现二进制数据的大批量导入。以下是详细介绍及适用语言说明&#xff1a; BeginBinaryImport 的作用 功能 它是 PostgreSQL C 接口库&#xf…...

【进程与线程】如何编写一个守护进程

如何编写一个守护进程。我们首先需要理解守护进程是什么。守护进程是在后台运行的进程&#xff0c;通常没有控制终端&#xff0c;用于执行系统任务&#xff0c;比如服务器或者定时任务。 用户可能想创建一个长期运行的服务&#xff0c;比如Web服务器或者日志监控程序。 首先&a…...

Docker容器访问外网:启动时的网络参数配置指南

在启动Docker镜像时,可以通过设置网络参数来确保容器能够访问外网。以下是几种常见的方法: 1. 使用默认的bridge网络 Docker的默认网络模式是bridge,它会创建一个虚拟网桥,将容器连接到宿主机的网络上。在大多数情况下,使用默认的bridge网络配置即可使容器访问外网。 启动…...

大数据-259 离线数仓 - Griffin架构 修改配置 pom.xml sparkProperties 编译启动

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; Java篇开始了&#xff01; 目前开始更新 MyBatis&#xff0c;一起深入浅出&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff0…...

DeepSeek神经网络:技术架构与实现原理探析

以下是一篇关于DeepSeek神经网络的研究及实现原理的综述性文章&#xff0c;结合其技术架构、训练范式及创新点展开分析&#xff1a; 1. 核心架构设计 DeepSeek的神经网络架构以**混合专家模型&#xff08;Mixture of Experts, MOE&#xff09;**为基础&#xff0c;结合轻量化…...

KTOR:高效的Linux横向移动与无文件落地HTTP服务扫描工具

地址:https://github.com/MartinxMax/KTOR 简介 KTOR 是一款专为 Linux 横向渗透设计的工具。通过该工具&#xff0c;您可以快速扫描内部 HTTP 服务&#xff0c;以便进一步进行网络渗透&#xff0c;且实现无文件落地扫描。 在CTF中通常需要利用本地其他端口HTTP服务或其他主…...

C++ Primer 类型转换

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

2025新的一年网络营销推广该怎么干?

2025年&#xff0c;全球网民数量预计突破60亿&#xff0c;但流量红利消退、用户注意力稀缺、技术迭代加速……企业网络营销正面临前所未有的“生存战”。如何在竞争中突围&#xff1f;小马识途营销机构基于十五年实战经验&#xff0c;总结出2025年企业必须抢占的五大核心战场&a…...

java实现Http请求方式的几种常见方式

背景 在实际开发过程中&#xff0c;我们经常需要调用对方提供的接口或测试自己写的接口是否合适。很多项目都会封装规定好本身项目的接口规范&#xff0c;所以大多数需要去调用对方提供的接口或第三方接口&#xff08;短信、天气等&#xff09;。若是普通java工程推荐使用OkHt…...

安卓开发,底部导航栏

1、创建导航栏图标 使用系统自带的矢量图库文件&#xff0c;鼠标右键点击res->New->Vector Asset 修改 Name , Clip art 和 Color 再创建一个 同样的方法再创建四个按钮 2、添加百分比布局依赖 app\build.gradle.kts 中添加百分比布局依赖&#xff0c;并点击Sync Now …...

Spring Boot中实现多租户架构

文章目录 Spring Boot中实现多租户架构多租户架构概述核心思想多租户的三种模式优势挑战租户识别机制1. 租户标识(Tenant Identifier)2. 常见的租户识别方式3. 实现租户识别的关键点4. 租户识别示例代码5. 租户识别机制的挑战数据库隔离的实现1. 数据库隔离的核心目标2. 数据…...

SpringBoot源码解析(十):应用上下文AnnotationConfigServletWebServerApplicationContext构造方法

SpringBoot源码系列文章 SpringBoot源码解析(一)&#xff1a;SpringApplication构造方法 SpringBoot源码解析(二)&#xff1a;引导上下文DefaultBootstrapContext SpringBoot源码解析(三)&#xff1a;启动开始阶段 SpringBoot源码解析(四)&#xff1a;解析应用参数args Sp…...

vue3+vite全局loading

vue3vite全局loading j-loading.vue组件 <template><transition enter-active-class"animate__animated animate__fadeIn"leave-active-class"animate__animated animate__fadeOut"><div class"root-box" v-if"show"…...

比亚迪发布智能化战略,天神之眼开创全民智驾

2月10日&#xff0c;比亚迪在深圳隆重召开智能化战略发布会&#xff0c;正式向全球发布了其最新的智驾技术——“天神之眼”。这一技术的发布&#xff0c;标志着比亚迪在智能驾驶领域迈出了坚实的一步&#xff0c;稳居行业第一梯队&#xff0c;真正实现了端到端的智能驾驶体验&…...

在 MySQL 中,通过存储过程结合条件判断来实现添加表字段时,如果字段已存在则不再重复添加

-- 创建存储过程 DELIMITER $$ CREATE PROCEDURE add_column(IN db_name VARCHAR(255),IN table_name VARCHAR(255),IN column_name VARCHAR(255),IN column_definition VARCHAR(255),IN column_comment VARCHAR(255) ) BEGINDECLARE column_exists INT;-- 检查字段是否存在SEL…...

UP-VLA:具身智体的统一理解与预测模型

25年1月来自清华大学和上海姚期智研究院的论文“UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent”。 视觉-语言-动作 (VLA) 模型的最新进展&#xff0c;利用预训练的视觉语言模型 (VLM) 来提高泛化能力。VLM 通常经过视觉语言理解任务的预训练&…...

后端开发ThreadLocal简介

ThreadLocal是线程的局部变量&#xff0c;为每个线程单独提供一份存储空间&#xff0c;具有线程隔离的效果&#xff0c;只有线程内能获取到对应的值 客户端发起的每次请求都对应一个单独的线程 常用方法 public void set(T value) 设置当前线程局部变量值public T get() 返回…...

AI分支知识之机器学习,深度学习,强化学习的关系

机器学习&#xff0c;深度学习&#xff0c;强化学习的关系 这一篇文章我们来探讨下AI领域中机器学习&#xff08;ML&#xff09;、深度学习&#xff08;DL&#xff09;和强化学习&#xff08;RL&#xff09;的关系。 一、机器学习&#xff08;ML&#xff09;&#xff1a;从数…...

微信小程序案例2——天气微信小程序(学会绑定数据)

文章目录 一、项目步骤1 创建一个weather项目2 进入index.wxml、index.js、index.wxss文件,清空所有内容,进入App.json,修改导航栏标题为“中国天气网”。3进入index.wxml,进行当天天气情况的界面布局,包括温度、最低温、最高温、天气情况、城市、星期、风行情况,代码如下…...

CPLD实现SPI通信

在 CPLD 中编写 SPI 程序时,需根据具体需求(主/从设备、时钟极性、数据位宽等)设计逻辑。以下提供一个 SPI 主控制器的 Verilog 实现示例,支持 模式 0(CPOL=0, CPHA=0),适用于控制外设(如 ADC、DAC、存储器等)。 SPI 主控制器模块设计(Verilog) 模块功能 支持 8/16…...

FFmpeg + OpenGL ES 美颜相机教程大纲

做OpenGL和FFmpeg也有很长一段时间了&#xff0c;最近打算结合FFmpegOpenGL ES做一期视频教程&#xff0c;下面是完整视频教程大纲。最终的项目实战效果是实现一款美颜相机。教程分为理论讲解和实战开发两部分&#xff0c;适合有一定编程基础的开发者。课程计划是免费发布在B站…...

dynamic_cast和static_cast和const_cast

dynamic_cast 在 C 中的作用 dynamic_cast 是 C 运行时类型转换&#xff08;RTTI, Run-Time Type Identification&#xff09;的一部分&#xff0c;主要用于&#xff1a; 安全的多态类型转换检查类型的有效性向下转换&#xff08;Downcasting&#xff09;跨类层次的指针或引用…...

SQLMesh系列教程-2:SQLMesh入门项目实战

假设你已经了解SQLMesh是什么&#xff0c;以及其他应用场景。如果没有&#xff0c;我建议你先阅读《SQLMesh系列教程-1&#xff1a;数据工程师的高效利器-SQLMesh》。 在本文中&#xff0c;我们将完成一个小项目或教程&#xff0c;以帮助你开始使用SQLMesh。你可以选择一步一步…...