基于yolov11的阿尔兹海默症严重程度检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
【算法介绍】
基于YOLOv11的阿尔兹海默症严重程度检测系统是一种创新的医疗辅助工具,旨在通过先进的计算机视觉技术提高阿尔兹海默症的早期诊断和病情监测效率。阿尔兹海默症是一种渐进性的神经退行性疾病,通常表现为认知障碍、记忆丧失和语言障碍等症状,早期诊断对于控制疾病发展至关重要。
该系统利用YOLOv11模型,这是一种在目标检测领域具有卓越性能的深度学习模型。通过对医学影像(如MRI或CT扫描)的分析,YOLOv11能够准确提取出与阿尔兹海默症相关的有价值特征。这些特征不仅可以帮助医生快速识别阿尔兹海默症的早期病变,还能够追踪病变区域的变化,从而监测病情的进展。
此外,基于YOLOv11的系统还能够提供个性化的病情分析。由于阿尔兹海默症患者的病变特征和进展速度可能因人而异,该系统能够为每位患者提供独特的影像特征分析,进而辅助医生制定更加精准和有效的治疗方案。
总之,基于YOLOv11的阿尔兹海默症严重程度检测系统为医生提供了一种高效、准确的辅助诊断工具,有望改善阿尔兹海默症患者的诊断体验和治疗效果。
【效果展示】
【测试环境】
windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.3.70
onnxruntime==1.16.3
【模型可以检测出类别】
ModerateDemented
MildDemented
SevereDemented
NonDemented
VeryMildDemented
【训练数据集介绍】
超声波图像阿尔兹海默症严重程度检测数据集VOC+YOLO格式3288张5类别-CSDN博客
【训练信息】
参数 | 值 |
训练集图片数 | 2959 |
验证集图片数 | 329 |
训练map | 99.4% |
训练精度(Precision) | 97.6% |
训练召回率(Recall) | 98.1% |
验证集测试精度信息
Class | Images | Instances | P | R | mAP50 | mAP50-95 |
all | 329 | 329 | 0.976 | 0.981 | 0.994 | 0.994 |
ModerateDemented | 86 | 86 | 1 | 0.987 | 0.995 | 0.995 |
MildDemented | 77 | 77 | 0.93 | 1 | 0.992 | 0.992 |
SevereDemented | 52 | 52 | 0.989 | 0.962 | 0.994 | 0.994 |
NonDemented | 56 | 56 | 1 | 0.959 | 0.993 | 0.993 |
VeryMildDemented | 58 | 58 | 0.96 | 1 | 0.995 | 0.995 |
【部分实现源码】
class Ui_MainWindow(QtWidgets.QMainWindow):signal = QtCore.pyqtSignal(str, str)def setupUi(self):self.setObjectName("MainWindow")self.resize(1280, 728)self.centralwidget = QtWidgets.QWidget(self)self.centralwidget.setObjectName("centralwidget")self.weights_dir = './weights'self.picture = QtWidgets.QLabel(self.centralwidget)self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))self.picture.setStyleSheet("background:black")self.picture.setObjectName("picture")self.picture.setScaledContents(True)self.label_2 = QtWidgets.QLabel(self.centralwidget)self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))self.label_2.setObjectName("label_2")self.cb_weights = QtWidgets.QComboBox(self.centralwidget)self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))self.cb_weights.setObjectName("cb_weights")self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)self.label_3 = QtWidgets.QLabel(self.centralwidget)self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))self.label_3.setObjectName("label_3")self.hs_conf = QtWidgets.QSlider(self.centralwidget)self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))self.hs_conf.setProperty("value", 25)self.hs_conf.setOrientation(QtCore.Qt.Horizontal)self.hs_conf.setObjectName("hs_conf")self.hs_conf.valueChanged.connect(self.conf_change)self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))self.dsb_conf.setMaximum(1.0)self.dsb_conf.setSingleStep(0.01)self.dsb_conf.setProperty("value", 0.25)self.dsb_conf.setObjectName("dsb_conf")self.dsb_conf.valueChanged.connect(self.dsb_conf_change)self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))self.dsb_iou.setMaximum(1.0)self.dsb_iou.setSingleStep(0.01)self.dsb_iou.setProperty("value", 0.45)self.dsb_iou.setObjectName("dsb_iou")self.dsb_iou.valueChanged.connect(self.dsb_iou_change)self.hs_iou = QtWidgets.QSlider(self.centralwidget)self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))self.hs_iou.setProperty("value", 45)self.hs_iou.setOrientation(QtCore.Qt.Horizontal)self.hs_iou.setObjectName("hs_iou")self.hs_iou.valueChanged.connect(self.iou_change)self.label_4 = QtWidgets.QLabel(self.centralwidget)self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))self.label_4.setObjectName("label_4")self.label_5 = QtWidgets.QLabel(self.centralwidget)self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))self.label_5.setObjectName("label_5")self.le_res = QtWidgets.QTextEdit(self.centralwidget)self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))self.le_res.setObjectName("le_res")self.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(self)self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))self.menubar.setObjectName("menubar")self.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(self)self.statusbar.setObjectName("statusbar")self.setStatusBar(self.statusbar)self.toolBar = QtWidgets.QToolBar(self)self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)self.toolBar.setObjectName("toolBar")self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)self.actionopenpic = QtWidgets.QAction(self)icon = QtGui.QIcon()icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionopenpic.setIcon(icon)self.actionopenpic.setObjectName("actionopenpic")self.actionopenpic.triggered.connect(self.open_image)self.action = QtWidgets.QAction(self)icon1 = QtGui.QIcon()icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action.setIcon(icon1)self.action.setObjectName("action")self.action.triggered.connect(self.open_video)self.action_2 = QtWidgets.QAction(self)icon2 = QtGui.QIcon()icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action_2.setIcon(icon2)self.action_2.setObjectName("action_2")self.action_2.triggered.connect(self.open_camera)self.actionexit = QtWidgets.QAction(self)icon3 = QtGui.QIcon()icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionexit.setIcon(icon3)self.actionexit.setObjectName("actionexit")self.actionexit.triggered.connect(self.exit)self.toolBar.addAction(self.actionopenpic)self.toolBar.addAction(self.action)self.toolBar.addAction(self.action_2)self.toolBar.addAction(self.actionexit)self.retranslateUi()QtCore.QMetaObject.connectSlotsByName(self)self.init_all()
【训练步骤】
使用YOLO11训练自己的数据集需要遵循一些基本的步骤。YOLO11是YOLO系列模型的一个版本,它在前代基础上做了许多改进,包括但不限于更高效的训练流程和更高的精度。以下是训练自己YOLO格式数据集的详细步骤:
一、 准备环境
1. 安装必要的软件:确保你的计算机上安装了Python(推荐3.6或更高版本),以及CUDA和cuDNN(如果你打算使用GPU进行加速)。
2. 安装YOLO11库:你可以通过GitHub克隆YOLOv8的仓库或者直接通过pip安装YOLO11。例如:
pip install ultralytics
二、数据准备
3. 组织数据结构:按照YOLO的要求组织你的数据文件夹。通常,你需要一个包含图像和标签文件的目录结构,如:
dataset/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
其中,train和val分别代表训练集和验证集。且images文件夹和labels文件夹名字不能随便改写或者写错,否则会在训练时候找不到数据集。
4. 标注数据:使用合适的工具对图像进行标注,生成YOLO格式的标签文件。每个标签文件应该是一个.txt文件,每行表示一个边界框,格式为:
<类别ID> <中心点x> <中心点y> <宽度> <高度>
这些值都是相对于图像尺寸的归一化值。
5. 创建数据配置文件:创建一个.yaml文件来定义你的数据集,包括路径、类别列表等信息。例如:
yaml
# dataset.yaml
path: ./dataset # 数据集根目录
train: images/train # 训练图片相对路径
val: images/val # 验证图片相对路径
nc: 2 # 类别数
names: ['class1', 'class2'] # 类别名称
三、模型训练
6. 加载预训练模型:可以使用官方提供的预训练模型作为起点,以加快训练速度并提高性能。
7. 配置训练参数:根据需要调整训练参数,如批量大小、学习率、训练轮次等。这通常可以通过命令行参数或配置文件完成。
8. 开始训练:使用YOLO11提供的命令行接口开始训练过程。例如:
yolo train data=dataset.yaml model=yolo11n.yaml epochs=100 imgsz=640
更多参数如下:
参数 | 默认值 | 描述 |
---|---|---|
model | None | Specifies the model file for training. Accepts a path to either a .pt pretrained model or a .yaml configuration file. Essential for defining the model structure or initializing weights. |
data | None | Path to the dataset configuration file (e.g., coco8.yaml ). This file contains dataset-specific parameters, including paths to training and validation data , class names, and number of classes. |
epochs | 100 | Total number of training epochs. Each epoch represents a full pass over the entire dataset. Adjusting this value can affect training duration and model performance. |
time | None | Maximum training time in hours. If set, this overrides the epochs argument, allowing training to automatically stop after the specified duration. Useful for time-constrained training scenarios. |
patience | 100 | Number of epochs to wait without improvement in validation metrics before early stopping the training. Helps prevent overfitting by stopping training when performance plateaus. |
batch | 16 | Batch size, with three modes: set as an integer (e.g., batch=16 ), auto mode for 60% GPU memory utilization (batch=-1 ), or auto mode with specified utilization fraction (batch=0.70 ). |
imgsz | 640 | Target image size for training. All images are resized to this dimension before being fed into the model. Affects model accuracy and computational complexity. |
save | True | Enables saving of training checkpoints and final model weights. Useful for resuming training ormodel deployment. |
save_period | -1 | Frequency of saving model checkpoints, specified in epochs. A value of -1 disables this feature. Useful for saving interim models during long training sessions. |
cache | False | Enables caching of dataset images in memory (True /ram ), on disk (disk ), or disables it (False ). Improves training speed by reducing disk I/O at the cost of increased memory usage. |
device | None | Specifies the computational device(s) for training: a single GPU (device=0 ), multiple GPUs (device=0,1 ), CPU (device=cpu ), or MPS for Apple silicon (device=mps ). |
workers | 8 | Number of worker threads for data loading (per RANK if Multi-GPU training). Influences the speed of data preprocessing and feeding into the model, especially useful in multi-GPU setups. |
project | None | Name of the project directory where training outputs are saved. Allows for organized storage of different experiments. |
name | None | Name of the training run. Used for creating a subdirectory within the project folder, where training logs and outputs are stored. |
exist_ok | False | If True, allows overwriting of an existing project/name directory. Useful for iterative experimentation without needing to manually clear previous outputs. |
pretrained | True | Determines whether to start training from a pretrained model. Can be a boolean value or a string path to a specific model from which to load weights. Enhances training efficiency and model performance. |
optimizer | 'auto' | Choice of optimizer for training. Options include SGD , Adam , AdamW , NAdam , RAdam , RMSProp etc., or auto for automatic selection based on model configuration. Affects convergence speed and stability. |
verbose | False | Enables verbose output during training, providing detailed logs and progress updates. Useful for debugging and closely monitoring the training process. |
seed | 0 | Sets the random seed for training, ensuring reproducibility of results across runs with the same configurations. |
deterministic | True | Forces deterministic algorithm use, ensuring reproducibility but may affect performance and speed due to the restriction on non-deterministic algorithms. |
single_cls | False | Treats all classes in multi-class datasets as a single class during training. Useful for binary classification tasks or when focusing on object presence rather than classification. |
rect | False | Enables rectangular training, optimizing batch composition for minimal padding. Can improve efficiency and speed but may affect model accuracy. |
cos_lr | False | Utilizes a cosine learning rate scheduler, adjusting the learning rate following a cosine curve over epochs. Helps in managing learning rate for better convergence. |
close_mosaic | 10 | Disables mosaic data augmentation in the last N epochs to stabilize training before completion. Setting to 0 disables this feature. |
resume | False | Resumes training from the last saved checkpoint. Automatically loads model weights, optimizer state, and epoch count, continuing training seamlessly. |
amp | True | Enables AutomaticMixed Precision (AMP) training, reducing memory usage and possibly speeding up training with minimal impact on accuracy. |
fraction | 1.0 | Specifies the fraction of the dataset to use for training. Allows for training on a subset of the full dataset, useful for experiments or when resources are limited. |
profile | False | Enables profiling of ONNX and TensorRT speeds during training, useful for optimizing model deployment. |
freeze | None | Freezes the first N layers of the model or specified layers by index, reducing the number of trainable parameters. Useful for fine-tuning or transfer learning . |
lr0 | 0.01 | Initial learning rate (i.e. SGD=1E-2 , Adam=1E-3 ) . Adjusting this value is crucial for the optimization process, influencing how rapidly model weights are updated. |
lrf | 0.01 | Final learning rate as a fraction of the initial rate = (lr0 * lrf ), used in conjunction with schedulers to adjust the learning rate over time. |
momentum | 0.937 | Momentum factor for SGD or beta1 for Adam optimizers, influencing the incorporation of past gradients in the current update. |
weight_decay | 0.0005 | L2 regularization term, penalizing large weights to prevent overfitting. |
warmup_epochs | 3.0 | Number of epochs for learning rate warmup, gradually increasing the learning rate from a low value to the initial learning rate to stabilize training early on. |
warmup_momentum | 0.8 | Initial momentum for warmup phase, gradually adjusting to the set momentum over the warmup period. |
warmup_bias_lr | 0.1 | Learning rate for bias parameters during the warmup phase, helping stabilize model training in the initial epochs. |
box | 7.5 | Weight of the box loss component in the loss_function, influencing how much emphasis is placed on accurately predicting bouding box coordinates. |
cls | 0.5 | Weight of the classification loss in the total loss function, affecting the importance of correct class prediction relative to other components. |
dfl | 1.5 | Weight of the distribution focal loss, used in certain YOLO versions for fine-grained classification. |
pose | 12.0 | Weight of the pose loss in models trained for pose estimation, influencing the emphasis on accurately predicting pose keypoints. |
kobj | 2.0 | Weight of the keypoint objectness loss in pose estimation models, balancing detection confidence with pose accuracy. |
label_smoothing | 0.0 | Applies label smoothing, softening hard labels to a mix of the target label and a uniform distribution over labels, can improve generalization. |
nbs | 64 | Nominal batch size for normalization of loss. |
overlap_mask | True | Determines whether object masks should be merged into a single mask for training, or kept separate for each object. In case of overlap, the smaller mask is overlayed on top of the larger mask during merge. |
mask_ratio | 4 | Downsample ratio for segmentation masks, affecting the resolution of masks used during training. |
dropout | 0.0 | Dropout rate for regularization in classification tasks, preventing overfitting by randomly omitting units during training. |
val | True | Enables validation during training, allowing for periodic evaluation of model performance on a separate dataset. |
plots | False | Generates and saves plots of training and validation metrics, as well as prediction examples, providing visual insights into model performance and learning progression. |
这里,data参数指向你的数据配置文件,model参数指定使用的模型架构,epochs设置训练轮次,imgsz设置输入图像的大小。
四、监控与评估
9. 监控训练过程:观察损失函数的变化,确保模型能够正常学习。
10. 评估模型:训练完成后,在验证集上评估模型的性能,查看mAP(平均精确度均值)等指标。
11. 调整超参数:如果模型的表现不佳,可能需要调整超参数,比如增加训练轮次、改变学习率等,并重新训练模型。
五、使用模型
12. 导出模型:训练完成后,可以将模型导出为ONNX或其他格式,以便于部署到不同的平台。比如将pytorch转成onnx模型可以输入指令
yolo export model=best.pt format=onnx
这样就会在pt模块同目录下面多一个同名的onnx模型best.onnx
下表详细说明了可用于将YOLO模型导出为不同格式的配置和选项。这些设置对于优化导出模型的性能、大小和跨各种平台和环境的兼容性至关重要。正确的配置可确保模型已准备好以最佳效率部署在预期的应用程序中。
参数 | 类型 | 默认值 | 描述 |
---|---|---|---|
format | str | 'torchscript' | Target format for the exported model, such as 'onnx' , 'torchscript' , 'tensorflow' , or others, defining compatibility with various deployment environments. |
imgsz | int or tuple | 640 | Desired image size for the model input. Can be an integer for square images or a tuple (height, width) for specific dimensions. |
keras | bool | False | Enables export to Keras format for Tensorflow SavedModel, providing compatibility with TensorFlow serving and APIs. |
optimize | bool | False | Applies optimization for mobile devices when exporting to TorchScript, potentially reducing model size and improving performance. |
half | bool | False | Enables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware. |
int8 | bool | False | Activates INT8 quantization, further compressing the model and speeding up inference with minimal accuracy loss, primarily for edge devices. |
dynamic | bool | False | Allows dynamic input sizes for ONNX, TensorRT and OpenVINO exports, enhancing flexibility in handling varying image dimensions. |
simplify | bool | True | Simplifies the model graph for ONNX exports with onnxslim , potentially improving performance and compatibility. |
opset | int | None | Specifies the ONNX opset version for compatibility with different ONNX parsers and runtimes. If not set, uses the latest supported version. |
workspace | float | 4.0 | Sets the maximum workspace size in GiB for TensorRT optimizations, balancing memory usage and performance. |
nms | bool | False | Adds Non-Maximum Suppression (NMS) to the CoreML export, essential for accurate and efficient detection post-processing. |
batch | int | 1 | Specifies export model batch inference size or the max number of images the exported model will process concurrently in predict mode. |
device | str | None | Specifies the device for exporting: GPU (device=0 ), CPU (device=cpu ), MPS for Apple silicon (device=mps ) or DLA for NVIDIA Jetson (device=dla:0 or device=dla:1 ). |
调整这些参数可以定制导出过程,以满足特定要求,如部署环境、硬件约束和性能目标。选择适当的格式和设置对于实现模型大小、速度和精度之间的最佳平衡至关重要。
导出格式:
可用的YOLO11导出格式如下表所示。您可以使用format参数导出为任何格式,即format='onnx'或format='engine'。您可以直接在导出的模型上进行预测或验证,即yolo predict model=yolo11n.onnx。导出完成后,将显示您的模型的使用示例。
导出格式 | 格式参数 | 模型 | 属性 | 参数 |
---|---|---|---|---|
pytorch | - | yolo11n.pt | ✅ | - |
torchscript | torchscript | yolo11n.torchscript | ✅ | imgsz , optimize , batch |
onnx | onnx | yolo11n.onnx | ✅ | imgsz , half , dynamic , simplify , opset , batch |
openvino | openvino | yolo11n_openvino_model/ | ✅ | imgsz , half , int8 , batch |
tensorrt | engine | yolo11n.engine | ✅ | imgsz , half , dynamic , simplify , workspace , int8 , batch |
CoreML | coreml | yolo11n.mlpackage | ✅ | imgsz , half , int8 , nms , batch |
TF SaveModel | saved_model | yolo11n_saved_model/ | ✅ | imgsz , keras , int8 , batch |
TF GraphDef | pb | yolo11n.pb | ❌ | imgsz , batch |
TF Lite | tflite | yolo11n.tflite | ✅ | imgsz , half , int8 , batch |
TF Edge TPU | edgetpu | yolo11n_edgetpu.tflite | ✅ | imgsz |
TF.js | tfjs | yolo11n_web_model/ | ✅ | imgsz , half , int8 , batch |
PaddlePaddle | paddle | yolo11n_paddle_model/ | ✅ | imgsz , batch |
MNN | mnn | yolo11n.mnn | ✅ | imgsz , batch , int8 , half |
NCNN | ncnn | yolo11n_ncnn_model/ | ✅ | imgsz , half , batch |
13. 测试模型:在新的数据上测试模型,确保其泛化能力良好。
以上就是使用YOLO11训练自己数据集的基本步骤。请根据实际情况调整这些步骤中的具体细节。希望这些信息对你有所帮助!
【常用评估参数介绍】
在目标检测任务中,评估模型的性能是至关重要的。你提到的几个术语是评估模型性能的常用指标。下面是对这些术语的详细解释:
- Class:
- 这通常指的是模型被设计用来检测的目标类别。例如,一个模型可能被训练来检测车辆、行人或动物等不同类别的对象。
- Images:
- 表示验证集中的图片数量。验证集是用来评估模型性能的数据集,与训练集分开,以确保评估结果的公正性。
- Instances:
- 在所有图片中目标对象的总数。这包括了所有类别对象的总和,例如,如果验证集包含100张图片,每张图片平均有5个目标对象,则Instances为500。
- P(精确度Precision):
- 精确度是模型预测为正样本的实例中,真正为正样本的比例。计算公式为:Precision = TP / (TP + FP),其中TP表示真正例(True Positives),FP表示假正例(False Positives)。
- R(召回率Recall):
- 召回率是所有真正的正样本中被模型正确预测为正样本的比例。计算公式为:Recall = TP / (TP + FN),其中FN表示假负例(False Negatives)。
- mAP50:
- 表示在IoU(交并比)阈值为0.5时的平均精度(mean Average Precision)。IoU是衡量预测框和真实框重叠程度的指标。mAP是一个综合指标,考虑了精确度和召回率,用于评估模型在不同召回率水平上的性能。在IoU=0.5时,如果预测框与真实框的重叠程度达到或超过50%,则认为该预测是正确的。
- mAP50-95:
- 表示在IoU从0.5到0.95(间隔0.05)的范围内,模型的平均精度。这是一个更严格的评估标准,要求预测框与真实框的重叠程度更高。在目标检测任务中,更高的IoU阈值意味着模型需要更准确地定位目标对象。mAP50-95的计算考虑了从宽松到严格的多个IoU阈值,因此能够更全面地评估模型的性能。
这些指标共同构成了评估目标检测模型性能的重要框架。通过比较不同模型在这些指标上的表现,可以判断哪个模型在实际应用中可能更有效。
【使用步骤】
使用步骤:
(1)首先根据官方框架ultralytics安装教程安装好yolov11环境,并安装好pyqt5
(2)切换到自己安装的yolo11环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可
【提供文件】
python源码
yolo11n.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)
相关文章:
基于yolov11的阿尔兹海默症严重程度检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
【算法介绍】 基于YOLOv11的阿尔兹海默症严重程度检测系统是一种创新的医疗辅助工具,旨在通过先进的计算机视觉技术提高阿尔兹海默症的早期诊断和病情监测效率。阿尔兹海默症是一种渐进性的神经退行性疾病,通常表现为认知障碍、记忆丧失和语言障碍等症状…...
redis之GEO 模块
文章目录 背景GeoHash 算法redis中的GeoHash 算法基本使用增加距离获取元素位置获取元素的 hash 值附近的元素 注意事项原理 背景 如果我们有需求需要存储地理坐标,为了满足高性能的矩形区域算法,数据表需要在经纬度坐标加上双向复合索引 (x, y)&#x…...
Java/Kotlin双语革命性ORM框架Jimmer(一)——介绍与简单使用
概览 Jimmer是一个Java/Kotlin双语框架 包含一个革命性的ORM 以此ORM为基础打造了一套综合性方案解决方案,包括 DTO语言 更全面更强大的缓存机制,以及高度自动化的缓存一致性 更强大客户端文档和代码生成能力,包括Jimmer独创的远程异常 …...
如何修改DNS解析?
DNS(域名系统)就像互联网的“电话簿”,负责将我们输入的网址转换为计算机能够理解的IP地址。如果DNS解析出现问题,访问网站就会受到影响。那我们该如何修改DNS解析呢?接下来,我们就来介绍一下这个话题。 为什么要修改DNS解析? 使用默认的…...
使用 POI-TL 和 JFreeChart 动态生成 Word 报告
文章目录 前言一、需求背景二、方案分析三、 POI-TL JFreeChart 实现3.1 Maven 依赖3.3 word模板设置3.2 实现代码 踩坑 前言 在开发过程中,我们经常需要生成包含动态数据和图表的 Word 报告。本文将介绍如何结合 POI-TL 和 JFreeChart,实现动态生成 W…...
Python的那些事第十五篇:数据分析中的“三剑客”NumPy、Pandas与Matplotlib
数据分析中的“三剑客”:NumPy、Pandas与Matplotlib 在数据分析的世界里,有三位“大侠”常常携手并肩,共同应对各种复杂的数据挑战。它们就是NumPy、Pandas和Matplotlib。这三位“大侠”各怀绝技,相互配合,让数据分析…...
25/2/7 <机器人基础> 牛顿-欧拉递推公式,开闭环
牛顿-欧拉递推公式是用于计算刚体动力学中,刚体的角速度和角加速度的递推关系。这个公式是牛顿第二定律和欧拉旋转定理的结合,适用于描述刚体在空间中的旋转运动。 对于一个刚体,设其在某时刻的角速度为 ω,角加速度为 α…...
vue3父子组件传值方式
父子组件传值方式 在 Vue 3 中,父子组件之间传值主要有以下几种常见方式,下面将详细介绍并给出演示代码。 1. 父组件向子组件传值:使用 props 原理 props 是 Vue 中用于在父组件向子组件传递数据的机制。父组件通过在子组件标签上绑定属性…...
树和二叉树_6
树和二叉树_6 一、leetcode-105二、题解1.引库2.代码 一、leetcode-105 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节…...
使用wpa_supplicant和wpa_cli 扫描wifi热点及配网
一:简要说明 交叉编译wpa_supplicant工具后会有wpa_supplicant和wpa_cli两个程序生产,如果知道需要连接的wifi热点及密码的话不需要遍历及查询所有wifi热点的名字及信号强度等信息的话,使用wpa_supplicant即可,否则还需要使用wpa_…...
个人职业发展——效率为王:AI赋能前端开发
在竞争激烈的IT行业,个人职业发展至关重要。而提升工作效率,无疑是加速职业发展的关键引擎。对于前端开发者而言,面对日益复杂的项目需求、不断变化的技术栈以及大量重复性的工作,如何提升效率,成为一个亟待解决的难题…...
【Android】Android开发应用如何开启任务栏消息通知
Android开发应用如何开启任务栏消息通知 1. 获取通知权限2.编写通知工具类3. 进行任务栏消息通知 1. 获取通知权限 在 AndroidManifest.xml 里加上权限配置,如下。 <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android…...
c语言:取绝对值
假设我们有一个 long 类型的变量 l,我们希望恢复其绝对值。以下是两种方法的对比: 方法1:使用条件语句 这个很好理解,负数时取负运算 ,用于数值的符号反转。 long abs_value(long l) {if (l < 0) {return -l;} e…...
HTML应用指南:利用GET请求获取全国盒马门店位置信息
随着新零售业态的发展,门店位置信息的获取变得至关重要。作为新零售领域的先锋,盒马鲜生不仅在商业模式创新上持续领先,还积极构建广泛的门店网络,以支持其不断增长的用户群体。本篇文章,我们将继续探究GET请求的实际应…...
MongoDB 深度教程:当 NoSQL 遇上幽默
MongoDB 深度教程:当 NoSQL 遇上幽默 欢迎来到这个 MongoDB 的奇妙冒险!如果你已经了解了 MongoDB 的基础知识,比如 CRUD 操作、数据库和集合的概念,但总觉得自己只是停留在门口徘徊,那么今天这篇教程就是为你量身定做…...
windows安装linux子系统【ubuntu】操作步骤
1.在windows系统中开启【适用于Linux的Windows子系统】 控制面板—程序—程序和功能—启用或关闭Windows功能—勾选适用于Linux的Windows子系统–确定 2.下载安装Linux Ubuntu 22.04.5 LTS系统 Ununtu下载链接 3.安装完Ununtu系统后更新系统 sudo apt update4.进入/usr/l…...
通过k8s请求selfsubjectrulesreviews查询权限
当前是通过kubelet进行查询 curl --cacert /etc/kubernetes/pki/ca.crt \ --cert /var/lib/kubelet/pki/kubelet-client-current.pem \ --key /var/lib/kubelet/pki/kubelet-client-current.pem \ -d - \ -H "Content-Type: application/json" \ -H Accept: applicat…...
如何参与开源项目
目的 就是说一下如何参与开源的项目,通过参与QXlsx来说明开源项目是如何参与的,其它的github上的开源项目,也是这样的流程。 关于GitHub: GitHub是一个面向开源及私有软件项目的托管平台,因为只支持Git作为唯一的版本库格式进行…...
Java 大视界 -- Java 大数据在智能金融监管中的应用与实践(77)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...
使用deepseek快速创作ppt
目录 1.在DeekSeek生成PPT脚本2.打开Kimi3.最终效果 DeepSeek作为目前最强大模型,其推理能力炸裂,但是DeepSeek官方没有提供生成PPT功能,如果让DeepSeek做PPT呢? 有个途径:在DeepSeek让其深度思考做出PPT脚本…...
如何在Python中创建和访问列表
在Python中,列表(list)是一种用于存储一系列有序项目的数据结构。这些项目可以是不同类型的,比如整数、浮点数、字符串,甚至是其他列表(形成嵌套列表)。以下是如何在Python中创建和访问列表的基…...
多线程下jdk1.7的头插法导致的死循环问题
20250208 多线程下jdk1.7的头插法导致的死循环问题 多线程下jdk1.7的头插法导致的死循环问题 【新版Java面试专题视频教程,java八股文面试全套真题深度详解(含大厂高频面试真题)】 jdk1.7在hashmap扩容时使用的是头插法,所以扩容…...
低代码系统-插件功能分析( 某道云)
本文主要把其的插件进行了简单分析,不做业务上的梳理,不做推荐。 可大致分为: 群机器人 信息查询 智能识别 实名验证类 数据库类 通知类 通知类 aPaas增强 考勤同步 财务类 类别 插件名称 功能简介 群机器人类 某钉机器人 即在表单处完…...
手搓基于CNN的Chest X-ray图像分类
数据集Chest X-ray PD Dataset 数据集介绍 - 知乎https://zhuanlan.zhihu.com/p/661311561 CPU版本 import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, models import …...
Golang 并发机制-7:sync.Once实战应用指南
Go的并发模型是其突出的特性之一,但强大的功能也带来了巨大的责任。sync.Once是由Go的sync包提供的同步原语。它的目的是确保一段代码只执行一次,而不管有多少协程试图执行它。这听起来可能很简单,但它改变了并发环境中管理一次性操作的规则。…...
java nio 底层使用的是select 、poll还是epoll
在 Java NIO 中,底层使用的 I/O 多路复用机制取决于操作系统和 JDK 的实现。 🚀 Java NIO 底层使用机制概述 操作系统默认多路复用机制系统调用Linuxepollepoll_create、epoll_ctl、epoll_waitWindowsselect 或 WSAPollselect() 或 WSAPoll()macOS / B…...
Kotlin协程详解——协程取消与超时
目录 一、协程取消 1.取消协程的执行 2.使计算代码可取消 3.在finally中释放资源 4.运行不能取消的代码块 二、协程超时 异步超时与资源管理 一、协程取消 1.取消协程的执行 在一个长时间运行的应用程序中,你也许需要对你的后台协程进行细粒度的控制。 比如…...
双向链表、内核链表和gdb(20250208)
单向链表 节点 数据域 指针域(后继节点) 双向链表 相比于单项指针,双向指针存有前驱节点的地址,使链表的灵活性更高。 内核链表 在内核中 offsetof:获取结构体某个成员到结构体开头的偏移量container_of:根据结…...
全程Kali linux---CTFshow misc入门(38-50)
第三十八题: ctfshow{48b722b570c603ef58cc0b83bbf7680d} 第三十九题: 37换成1,36换成0,就得到长度为287的二进制字符串,因为不能被8整除所以,考虑每7位转换一个字符,得到flag。 ctfshow{5281…...
MySQL 8.0.41安装教程(2025年2月8号)
下载网址:https://www.mysql.com/cn/downloads/ 点击 我选择的是第二个离线安装 点击之后,选择直接下载: 下载完成双击: 我选择的是自定义安装: 右边默认已经存在我选择的8.0.41 点击红框中的,自定义安装路…...
【自学笔记】Deepseek的基础知识点总览-持续更新
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 Deepseek知识点总览一、Deepseek简介二、Deepseek的三大适用模式1. 基础模型(V3)2. 深度思考(R1)3. 联网搜索模式 三…...
10N10-ASEMI中低压N沟道MOS管10N10
编辑:ll 10N10-ASEMI中低压N沟道MOS管10N10 型号:10N10 品牌:ASEMI 封装:TO-252 最大漏源电流:10A 漏源击穿电压:100V 批号:最新 RDS(ON)Max:135mΩ …...
2025年2月8日(Adafruit_PCA9685详细使用)
Adafruit_PCA9685 是一个 Python 模块,用于与 PCA9685 驱动芯片进行通信,该芯片常用于控制多个伺服电机。PCA9685 是一个 16 通道的 PWM(脉宽调制)驱动器,常用于需要精确控制多个伺服电机的应用。 以下是详细的使用方…...
MR30分布式IO模块:驱动智能制造工厂的工业互联与高效控制新范式
在工业4.0与智能制造浪潮的推动下,传统制造业正经历着从“机械驱动”向“数据驱动”的深刻转型。作为工业数据连接领域的领军者,明达技术凭借其自主研发的MR30分布式IO模块,以创新的技术架构与卓越的性能表现,为全球制造企业构建了…...
Reqable使用实践
一、背景 日常开发中,难免要抓取请求数据,查看接口数据,从而更好定位问题,基于这个原因,查找了一些抓包工具,例如: HttpCanary、 Steam 、Fiddler等,不是要钱,就是只对苹…...
数据可视化基本套路总结
首先从维基百科上搬出数据可视化的概念: 数据可视化是关于数据之视觉表现形式的研究;其中,这种数据的视觉表现形式被定义为一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。 用人话简单来说,数据…...
TensorFlow域对抗训练DANN神经网络分析MNIST与Blobs数据集梯度反转层提升目标域适应能力可视化...
全文链接:https://tecdat.cn/?p39656 本文围绕基于TensorFlow实现的神经网络对抗训练域适应方法展开研究。详细介绍了梯度反转层的原理与实现,通过MNIST和Blobs等数据集进行实验,对比了不同训练方式(仅源域训练、域对抗训练等&am…...
DNS劫持和HTTPDNS
DNS 劫持是一种网络攻击手段,攻击者通过篡改域名系统(DNS)解析过程,将用户请求的域名重定向到恶意网站或其他不正确的地址。这种攻击可以用于多种目的,例如窃取用户数据、传播恶意软件或进行钓鱼攻击。 举个例子 假设…...
云原生微服务
能够认识到云原生微服务对应用程序设计的影响,描述无状态微服务,并比较单体和微服务架构。要充分利用运营模式,您需要以不同的方式思考应用程序设计。您需要考虑云原生微服务。此图像显示了一个应用程序,该应用程序被设计为小型微…...
【deepSeek R1】Ollama 更改模型安装位置 以及应用安装位置
【deepSeek R1】Ollama 更改模型安装位置 以及应用安装位置 本地版部署deepSeek R1 可以参考文章 3分钟教你搭建属于自己的本地大模型 DeepSeek R1 Ollama 是一个开源工具,旨在帮助用户轻松在本地计算机上运行、部署和管理大型语言模型(LLMs)…...
windows + visual studio 2019 使用cmake 编译构建静、动态库并调用详解
环境 windows visual studio 2019 visual studio 2019创建cmake工程 1. 静态库.lib 1.1 静态库编译生成 以下是我创建的cmake工程文件结构,只关注高亮文件夹部分 libout 存放编译生成的.lib文件libsrc 存放编译用的源代码和头文件CMakeLists.txt 此次编译CMak…...
使用Feign代替RestTemplet
Feign RestTemplet存在的问题 String url "http: //userservice/user/" order.getUserId(); User user restTemplate.getFor0bject(url, User.class);可读性差参数复杂URL难以维护 Feign声明式的Http客户端,官方地址:https://github.com…...
苹果笔记本安装jmeter
下载并安装jmeter即可,jmeter官网下载地址:Apache JMeter - Download Apache JMeter 参考以下文章:“https://blog.csdn.net/weixin_51664828/article/details/145008755”...
设备通过国标GB28181接入EasyCVR,显示在线但视频无法播放的原因排查
安防监控EasyCVR平台支持多种视频源接入,包括但不限于IP摄像头、NVR、编码器、流媒体服务器等。平台采用高效的视频流接入技术,支持大规模视频流的并发接入,确保视频流的稳定性和流畅性。 有用户反馈,项目现场使用国标GB28181接入…...
为什么我喜欢在 CSS 中使用 RegEx
说到正则(RegEx),我们第一反应往往是“在编程中用来匹配或验证字符串”,比如做表单验证。但其实在 CSS 中,也能用到与正则类似的选择器特性,为我们的样式管理带来诸多便利。别怀疑,以下就是如何…...
深度剖析 Redisson 分布式锁:原理、实现与应用实践
文章目录 写在文章开头详解Redisson 分布式锁使用和实现前置准备工作分布式锁的基本使用公平锁的使用联锁的使用读写锁基本使用常见问题Redisson和Jedis有什么区别redisson如何实现分布式锁redisson如何实现分布式锁的可重入redisson如何实现公平锁Redisson的watchdog机制是什么…...
今日AI和商界事件(2025-02-08)
今日AI领域的重大事件主要包括以下几个方面: 一、DeepSeek引发的行业震动 事件概述:DeepSeek作为近期崛起的AI模型,以其低成本、高性能的推理能力引发了广泛关注。其开源策略、独特的出身以及强大的算力表现,使得微软、英伟达等…...
Mac 基于Ollama 本地部署DeepSeek离线模型
最近节日期间最火的除了《哪吒》就是deepseek了,毕竟又让西方各个层面都瑟瑟发抖的产品。DeepSeek凭借其强大的AI能力真的是在全球多个领域展现出强大的影响力。由于受到外部势力的恶意攻击倒是deepseek官方服务不稳定,国内其他厂家的适配版本也不是很稳…...
Python截图轻量化工具
这是用Python做到截图工具,不过由于使用了ctypes调用了Windows的API, 同时访问了Windows中"C:/Windows/Cursors/"中的.cur光标样式文件, 这个工具只适用于Windows环境; 如果要提升其跨平台性的话,需要考虑替换ctypes的一些专属于W…...
怎麼在Chrome中設置代理伺服器?
出於隱私、安全或者訪問特定網路資源的需求,設置代理伺服器顯得尤為重要。本文將詳細介紹如何在Chrome流覽器中進行代理伺服器的設置。 代理伺服器是介於電腦和互聯網之間的一道“中間牆”。幫助間接訪問互聯網資源,這樣實際的IP地址被代理伺服器的IP地…...