当前位置: 首页 > news >正文

讯飞智作 AI 配音技术浅析(三):自然语言处理

自然语言处理(NLP)是讯飞智作 AI 配音技术的重要组成部分,负责将输入的文本转换为机器可理解的格式,并提取出文本的语义和情感信息,以便生成自然、富有表现力的语音。


一、基本原理

讯飞智作 AI 配音的 NLP 技术主要包含以下几个核心步骤:

1.文本规范化(Text Normalization):将输入文本转换为标准格式,处理数字、缩写、特殊符号等。

2.分词与词性标注(Tokenization and Part-of-Speech Tagging):将文本拆分为词语,并标注每个词语的词性。

3.语义理解(Semantic Understanding):理解文本的语义和意图。

4.情感分析(Sentiment Analysis):分析文本的情感倾向,如积极、消极或中性。

    这些步骤共同作用,使得机器能够理解文本的内容和情感,从而生成符合文本语义的语音。


    二、实现细节

    1. 文本规范化(Text Normalization)

    1.1 基本原理

    文本规范化是将输入文本转换为适合语音合成的标准格式,包括处理数字、缩写、特殊符号、日期、时间等。这一步骤对于确保语音合成的准确性和自然度至关重要。

    1.2 实现细节
    1.2.1 数字处理
    • 数字转文本:将阿拉伯数字转换为中文数字或英文单词。例如:

      模型公式

    1.2.2 缩写处理
    • 缩写展开:将常见的缩写转换为完整形式。例如:

      模型公式

    1.2.3 特殊符号处理
    • 符号转换:将特殊符号转换为对应的文本形式。例如:

      模型公式

    1.2.4 日期实现
    • 日期转换:将日期格式转换为标准文本形式。例如:

      模型公式

    1.3 关键技术实现
    • 正则表达式(Regular Expressions):用于匹配和替换特定的文本模式,如数字、缩写、特殊符号等。
    • 词典匹配(Dictionary Lookup):使用预定义的词典进行缩写展开和符号转换。
    • 序列到序列模型(Seq2Seq Models):对于更复杂的文本规范化任务,可以使用基于深度学习的序列到序列模型进行端到端的转换。

    2. 分词与词性标注(Tokenization and Part-of-Speech Tagging)

    2.1 基本原理

    分词是将连续的文本序列拆分为词语或词组的过程,而词性标注则是为每个词语分配一个词性标签(如名词、动词、形容词等)。这两个步骤是理解文本语义和语法结构的基础。

    2.2 实现细节
    2.2.1 分词
    • 基于词典的分词:使用预定义的词典进行分词。例如:

      模型公式

    • 基于统计的分词:使用统计模型(如隐马尔可夫模型)进行分词。例如:

      模型公式

      其中,t 是分词结果,P\left ( t|x \right ) 是给定文本 x 的分词概率。

    2.2.2 词性标注
    • 基于规则的方法:使用预定义的语法规则进行词性标注。例如:

    • 基于统计的方法:使用隐马尔可夫模型、条件随机场等统计模型进行词性标注。例如:

      模型公式

      其中,t 是词性标注结果,P\left ( t|x \right ) 是给定文本 x 的词性标注概率。

    2.2.3 关键技术实现
    • 条件随机场(CRF):用于序列标注任务,能够有效捕捉上下文信息,提高标注准确性。
    • 双向长短期记忆网络(Bi-LSTM):用于捕捉序列中的长距离依赖关系,提升分词和词性标注的性能。
    • Transformer 模型:利用自注意力机制,捕捉更复杂的上下文信息,进一步提升 NLP 任务的准确性。

    3. 情感分析(Sentiment Analysis)

    3.1 基本原理

    情感分析是识别文本中蕴含的情感倾向(如积极、消极、中性)的过程。这一步骤对于生成富有表现力的语音至关重要。

    3.2 实现细节
    3.2.1 基于词典的方法
    • 情感词典:使用预定义的情绪词词典,根据文本中出现的情感词来判定情感倾向。例如:

      模型公式

    3.2.2 基于机器学习的方法
    • 特征提取:提取文本的特征,如词袋模型、TF-IDF、词嵌入等。
    • 分类器:使用机器学习算法(如支持向量机、随机森林)进行情感分类。例如:

      模型公式

    3.2.3 基于深度学习的方法
    • 深度神经网络:使用深度学习模型(如卷积神经网络、循环神经网络、Transformer)进行情感分析。例如:

      模型公式

      其中,词嵌入是将词语转换为向量表示的过程。

    3.2.4 关键技术实现
    • 词嵌入(Word Embeddings):将词语转换为向量表示,捕捉词语之间的语义关系。常用的方法有 Word2Vec、GloVe、FastText 等。
    • 注意力机制(Attention Mechanism):用于聚焦于文本中与情感相关的词语,提升情感分析的准确性。
    • Transformer 模型:利用自注意力机制,捕捉更复杂的上下文信息,进一步提升情感分析的准确性。

    4. 语义理解(Semantic Understanding)

    4.1 基本原理

    语义理解是理解文本的语义和意图的过程。这一步骤对于生成符合文本语义的语音至关重要。

    4.2 实现细节
    4.2.1 基于规则的方法
    • 语义规则:使用预定义的语义规则进行语义理解。例如:

    4.2.2 基于机器学习的方法
    • 特征提取:提取文本的特征,如词袋模型、TF-IDF、词嵌入等。
    • 分类器:使用机器学习算法(如逻辑回归、支持向量机)进行语义分类。例如:

    4.2.3 基于深度学习的方法
    • 深度神经网络:使用深度学习模型(如卷积神经网络、循环神经网络、Transformer)进行语义理解。例如:

    4.2.4 关键技术实现
    • 语义角色标注(Semantic Role Labeling):识别句子中的语义角色(如主语、谓语、宾语),理解句子的语义结构。
    • 依存句法分析(Dependency Parsing):分析句子中词语之间的依存关系,理解句子的语法结构。
    • 预训练语言模型(Pre-trained Language Models):使用预训练的深度学习模型(如 BERT、GPT)进行语义理解,能够捕捉更复杂的语义关系。

    三、模型详解

    1. 文本规范化模型

    讯飞智作 AI 配音的文本规范化模型结合了基于规则和基于机器学习的方法:

    • 规则引擎:处理常见的数字、缩写、特殊符号等。
    • 序列到序列模型(Seq2Seq):处理更复杂的文本规范化任务,如日期转换、复杂缩写展开等。

    模型公式

    2. 分词与词性标注模型

    讯飞智作 AI 配音的分词与词性标注模型采用基于深度学习的方法:

    • Bi-LSTM-CRF 模型:结合双向长短期记忆网络和条件随机场,进行分词和词性标注。

    模型公式

    3. 情感分析模型

    讯飞智作 AI 配音的情感分析模型采用基于 Transformer 的深度学习模型:

    • BERT 模型:使用预训练的 BERT 模型进行情感分析,能够捕捉更复杂的语义关系。

    模型公式

    4. 语义理解模型

    讯飞智作 AI 配音的语义理解模型采用基于预训练语言模型的方法:

    • BERT 模型:使用预训练的 BERT 模型进行语义理解,能够理解文本的语义和意图。

    模型公式

    相关文章:

    讯飞智作 AI 配音技术浅析(三):自然语言处理

    自然语言处理(NLP)是讯飞智作 AI 配音技术的重要组成部分,负责将输入的文本转换为机器可理解的格式,并提取出文本的语义和情感信息,以便生成自然、富有表现力的语音。 一、基本原理 讯飞智作 AI 配音的 NLP 技术主要包…...

    html转PDF文件最完美的方案(wkhtmltopdf)

    目录 需求 一、方案调研 二、wkhtmltopdf使用 如何使用 文档简要说明 三、后端服务 四、前端服务 往期回顾 需求 最近在做报表类的统计项目,其中有很多指标需要汇总,网页内容有大量的echart图表,做成一个网页去浏览,同时…...

    漏洞挖掘 | 基于mssql数据库的sql注入

    视频教程在我主页简介或专栏里 目录: 前记 0x1 判断网站数据库类型 0x2 了解mssql数据库的主要三大系统表 0x3 了解mssql的主要函数 0x4 判断注入点及其注入类型 0x5 联合查询之判断列数 0x6 联合查询之获取数据库相关信息 0x7 mssql之时间盲注 0x8 mssql之报错注…...

    .Net Core笔记知识点(跨域、缓存)

    设置前端跨域配置示例: builder.Services.AddCors(option > {option.AddDefaultPolicy(policy > {policy.WithOrigins(originUrls).AllowAnyMethod().AllowAnyHeader().AllowCredentials();});});var app builder.Build();app.UseCors(); 【客户端缓存】接…...

    JS实现一个通用的循环填充数组的方法

    function createFilledArray(length, pattern) {return Array.from({ length }, (_, i) > pattern[i % pattern.length]); }// 示例 const result createFilledArray(8, [1, 2, 3]);console.log(result); // [1, 2, 3, 1, 2, 3, 1, 2]解析: createFilledArray(…...

    Java项目: 基于SpringBoot+mybatis+maven+mysql实现的智能学习平台管理系(含源码+数据库+毕业论文)

    一、项目简介 本项目是一套基于SpringBootmybatismavenmysql实现的智能学习平台管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、…...

    Rust HashMap :当储物袋遇上物品清单

    开场白:哈希映射的魔法本质 在Rust的奇幻世界里,HashMap就像魔法师的储物袋: 键值对存储 → 每个物品都有专属咒语(键)和实体(值)快速查找 → 念咒瞬间召唤物品动态扩容 → 自动伸展的魔法空间…...

    力扣-哈希表-18 四数之和

    思路 和《三数之和》类似&#xff0c;也使用类似双指针的操作&#xff0c;重点在去重&#xff0c;细节是多个数目相加需要小心超出范围&#xff0c;强转一下。 代码 class Solution { public:vector<vector<int>> fourSum(vector<int>& nums, int tar…...

    DeepSeek-VL2论文解读:用于高级多模态理解的专家混合视觉语言模型

    github:https://github.com/deepseek-ai/DeepSeek-VL2 paper: https://github.com/deepseek-ai/DeepSeek-VL2/blob/main/DeepSeek_VL2_paper.pdf 大型视觉语言模型&#xff08;VLMs&#xff09;已经成为人工智能领域的变革性力量&#xff0c;将大型语言模型&#xff08;LLMs&…...

    PHP JSON操作指南

    PHP JSON操作指南 概述 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解析和生成。PHP作为一门流行的服务器端脚本语言&#xff0c;支持对JSON数据进行读取、编写和解析。本文将…...

    使用ES5和ES6求函数参数的和、解析URL Params为对象

    文章目录 1 使用ES5和ES6求函数参数的和1.1 ES51.2 ES6 2 解析URL Params为对象 1 使用ES5和ES6求函数参数的和 1.1 ES5 function sum() {let sum 0;Array.prototype.forEach.call(arguments, function(item) {sum item * 1;})return sum; }1.2 ES6 function sum(...nums)…...

    Python 数据挖掘与机器学习

    模块一&#xff1a;Python编程 Python编程入门 1、Python环境搭建 2、如何选择Python编辑器&#xff1f; 3、Python基础 4、常见的错误与程序调试 5、第三方模块的安装与使用 6、文件读写&#xff08;I/O&#xff09; Python进阶与提高 1、Numpy模块库 2、Pandas模块…...

    【华为OD-E卷 - 108 最大矩阵和 100分(python、java、c++、js、c)】

    【华为OD-E卷 - 最大矩阵和 100分&#xff08;python、java、c、js、c&#xff09;】 题目 给定一个二维整数矩阵&#xff0c;要在这个矩阵中选出一个子矩阵&#xff0c;使得这个子矩阵内所有的数字和尽量大&#xff0c;我们把这个子矩阵称为和最大子矩阵&#xff0c;子矩阵的…...

    Mysql系列之--重新认识Mysql

    1、Mysql是什么 Mysql是一个被广泛使用的开源的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;使用结构化查询语句SQL进行管理和操作数据。Mysql有客户端和服务端&#xff0c;客户端通过ip地址、端口、用户名、密码连接到服务端&#xff0c;然后使用SQL语句进…...

    利用UNIAPP实现短视频上下滑动播放功能

    在 UniApp 中实现一个短视频上下滑动播放的功能,可以使用 swiper 组件来实现滑动效果,并结合 video 组件来播放短视频。以下是一个完整的示例,展示如何在 UniApp 中实现这一功能。 1. 创建 UniApp 项目 如果你还没有创建 UniApp 项目,可以使用 HBuilderX 创建一个新的项目…...

    计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价预测 机器学习 深度学习 Python爬虫 HDFS集群

    温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

    Shell 中的 Globbing:原理、使用方法与实现解析(中英双语)

    Shell 中的 Globbing&#xff1a;原理、使用方法与实现解析 在 Unix Shell&#xff08;如 Bash、Zsh&#xff09;中&#xff0c;globbing 是指 文件名模式匹配&#xff08;filename pattern matching&#xff09;&#xff0c;它允许用户使用特殊的通配符&#xff08;wildcards…...

    解决 ssh connect to host github.com port 22 Connection timed out

    一、问题描述 本地 pull/push 推送代码到 github 项目报 22 端口连接超时&#xff0c;测试连接也是 22 端口连接超时 ssh 密钥没问题、也开了 Watt Toolkit 网络是通的&#xff0c;因此可以强制将端口切换为 443 二、解决方案 1、测试连接 ssh -T gitgithub.com意味着无法通…...

    CSS的媒体查询语法

    CSS的媒体查询语法 常见的媒体类型常见的特性示例 CSS的媒体查询语法可以根据不同的设备特性&#xff08;如屏幕尺寸、分辨率等&#xff09;应用不同的样式。基本语法如下&#xff1a; media 媒体类型 and (特性: 值) {/* 样式规则 */ }常见的媒体类型 screen&#xff1a;用于…...

    生产环境超实用shell脚本一

    生产环境超实用shell脚本一 Shell脚本作为一种强大的自动化工具&#xff0c;能够帮助运维人员轻松应对各种复杂的任务。 本文将为您介绍服务器健康检查、日志清理、备份以及监控等多个方面&#xff0c;并详细阐述每个脚本的功能和应用场景&#xff0c;助力您提升运维效率&…...

    【1】高并发导出场景下,服务器性能瓶颈优化

    高并发导出场景下&#xff0c;服务器性能瓶颈通常出现在 CPU、内存、磁盘 I/O 或网络带宽等方面。为了解决这些问题&#xff0c;可以从以下几个方面进行优化&#xff1a; 1. 优化导出逻辑 减少计算复杂度&#xff1a;检查导出逻辑中是否存在不必要的计算或重复操作&#xff0c;…...

    go的sync包学习

    包含了sync.Mutex,sync.RWMutex,sync.Cond,sync.Map,sync.Once等demo sync.Mutex //讲解mutex import ("fmt""math/rand""sync""time" )type Toilet struct {m sync.Mutex } type Person struct {Name string }var DateTime "2…...

    一文读懂:TCP网络拥塞的应对策略与方案

    TCP&#xff08;传输控制协议&#xff09;是互联网中广泛使用的可靠传输协议&#xff0c;它通过序列号、确认应答、重发控制、连接管理以及窗口控制等机制确保数据的可靠传输。然而&#xff0c;在网络环境中&#xff0c;由于多个主机共享网络资源&#xff0c;网络拥塞成为了一个…...

    用DeepSeek分析总结一下DeepSeek发表过的8篇论文

    1. 《深度求索大语言模型&#xff1a;以长期主义拓展开源语言模型》&#xff08;2024年1月5日&#xff09; 2. 《深度求索代码模型&#xff1a;当大语言模型遇上编程——代码智能的崛起》&#xff08;2024年1月26日&#xff09; 3. 《深度求索视觉语言模型&#xff1a;迈向真…...

    node.js使用mysql2对接数据库

    一、引言 在现代Web开发中&#xff0c;Node.js作为一种高效、轻量级的JavaScript运行时环境&#xff0c;已经广泛应用于后端服务的开发中。而MySQL&#xff0c;作为一个广泛使用的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;提供了强大的数据存储和查询功能…...

    华为支付-免密支付接入免密代扣说明

    免密代扣包括支付并签约以及签约代扣场景。 开发者接入免密支付前需先申请开通签约代扣产品&#xff08;即申请配置免密代扣模板及协议模板ID&#xff09;。 华为支付以模板维度管理每一个代扣扣费服务&#xff0c;主要组成要素如下&#xff1a; 接入免密支付需注意&#x…...

    Java 面试真题解析与技巧分享

    Java 面试对于每一位 Java 开发者来说都是至关重要的&#xff0c;它不仅是对我们技术能力的检验&#xff0c;更是我们迈向理想工作岗位的关键一步。在面试中&#xff0c;掌握常见真题的解题思路和回答技巧&#xff0c;能够让我们更加自信地展示自己的实力。本文将结合具体的面试…...

    使用 Python 编程语言来实现机器学习小项目教程案例

    以下是一个简单的机器学习小项目教程案例,使用 Python 编程语言和 Scikit-learn 库来实现一个分类任务。我们将使用经典的鸢尾花(Iris)数据集来训练一个分类器,预测鸢尾花的种类。 项目目标 使用机器学习算法对鸢尾花数据集进行分类,预测鸢尾花的类别(Setosa、Versicolor…...

    网络安全 | 零信任架构:重构安全防线的未来趋势

    网络安全 | 零信任架构&#xff1a;重构安全防线的未来趋势 一、前言二、零信任架构的核心概念与原理2.1 核心概念2.2 原理 三、零信任架构的关键技术组件3.1 身份管理与认证系统3.2 授权与访问控制系统3.3 网络与安全监测系统3.4 加密与数据保护技术 四、零信任架构与传统安全…...

    react关于手搓antd pro面包屑的经验(写的不好请见谅)

    我们先上代码&#xff0c;代码里面都有注释&#xff0c;我是单独写了一个组件&#xff0c;方便使用&#xff0c;在其他页面引入就行了 还使用了官方的Breadcrumb组件 import React, { useEffect, useState } from react; import { Breadcrumb, Button } from antd; import { …...

    PHP-运算符

    [题目信息]&#xff1a; 题目名称题目难度PHP-运算符2 [题目考点]&#xff1a; PHP运算符优先级[Flag格式]: SangFor{zEk4r_djfgy0CibPz6LdXpwBrXRckhIT}[环境部署]&#xff1a; docker-compose.yml文件或者docker tar原始文件。 http://分配ip:2067[题目writeup]&#x…...

    chrome浏览器chromedriver下载

    chromedriver 下载地址 https://googlechromelabs.github.io/chrome-for-testing/ 上面的链接有和当前发布的chrome浏览器版本相近的chromedriver 实际使用感受 chrome浏览器会自动更新&#xff0c;可以去下载最新的chromedriver使用&#xff0c;自动化中使用新的chromedr…...

    BurpSuite抓包与HTTP基础

    文章目录 前言一、BurpSuite1.BurpSuite简介2.BurpSuite安装教程(1)BurpSuite安装与激活(2)安装 https 证书 3.BurpSuite使用4.BurpSuite资料 二、图解HTTP1.HTTP基础知识2.HTTP客户端请求消息3.HTTP服务端响应消息4.HTTP部分请求方法理解5.HTTPS与HTTP 总结 前言 在网络安全和…...

    SQLAlchemy 2.0的简单使用教程

    SQLAlchemy 2.0相比1.x进行了很大的更新&#xff0c;目前网上的教程不多&#xff0c;以下以链接mysql为例介绍一下基本的使用方法 环境及依赖 Python:3.8 mysql:8.3 Flask:3.0.3 SQLAlchemy:2.0.37 PyMySQL:1.1.1使用步骤 1、创建引擎&#xff0c;链接到mysql engine crea…...

    Android原生开发问题汇总

    Fragment顶部出现一个白条怎么办&#xff1f;父类布局搞事情。 layer-list被拉伸问题 Android之 ImageView android:src和tools:src的区别是什么? Android运行时权限的总结&#xff0c;以及EasyPermissions框架的使用 Android Studio添加EasyPemissions Android中module怎…...

    springboot中使用注解实现分布式锁

    下面将详细介绍如何在 Spring Boot 里借助注解实现分布式锁&#xff0c;以login_lock:作为锁的 key 前缀&#xff0c;使用请求参数里的phone值作为 key&#xff0c;等待时间设为 0 秒&#xff0c;锁的持续时间为 10 秒。我们会使用 Redis 来实现分布式锁&#xff0c;同时借助 S…...

    Android TabLayout 使用进阶(含源码)

    android:layout_height“match_parent” android:orientation“vertical” tools:context“.mode2.ClassificationActivity”> <com.google.android.material.tabs.TabLayout android:id“id/tab_layout” android:layout_width“match_parent” android:layout_he…...

    数据库系统概论的第六版与第五版的区别,附pdf

    我用夸克网盘分享了「数据库系统概论第五六版资源」&#xff0c;点击链接即可保存。 链接&#xff1a;https://pan.quark.cn/s/21a278378dee 第6版教材修订的主要内容 为了保持科学性、先进性和实用性&#xff0c;在第5版教材基础上对全书内容进行了修改、更新和充实。 在科…...

    管理etcd的存储空间配额

    如何管理etcd的存储空间配额 - 防止集群存储耗尽指南 本文基于etcd v3.4官方文档编写 为什么需要空间配额&#xff1f; 在分布式系统中&#xff0c;etcd作为可靠的键值存储&#xff0c;很容易成为系统瓶颈。当遇到以下情况时&#xff1a; 应用程序频繁写入大量数据未及时清理…...

    深入浅出 NRM:加速你的 npm 包管理之旅

    文章目录 前言一、NRM 是什么&#xff1f;二、为什么需要 NRM&#xff1f;三、NRM 的优势四、NRM 的安装与使用4.1 安装 NRM4.2 查看可用的 npm 源4.3 切换 npm 源4.4 测试 npm 源速度4.5 添加自定义 npm 源4.6 删除 npm 源 五、NRM 的进阶使用六、总结 前言 作为一名 JavaScr…...

    ESP32开发学习记录---》GPIO

    she 2025年2月5日&#xff0c;新年后决定开始充电提升自己&#xff0c;故作此记,以前没有使用过IDF开发ESP32因此新年学习一下ESP32。 ESPIDF开发环境配置网上已经有很多的资料了&#xff0c;我就不再赘述&#xff0c;我这里只是对我的学习经历的一些记录。 首先学习一个…...

    stm32点灯 GPIO的输出模式

    目录 1.选择RCC时钟 2.SYS 选择调试模式 SW 3.GPIO 配置 4.时钟树配置&#xff08; 默认不变&#xff09;HSI 高速内部时钟8Mhz 5.项目配置 6.代码 延时1s循环LED亮灭 1.选择RCC时钟 2.SYS 选择调试模式 SW 3.GPIO 配置 4.时钟树配置&#xff08; 默认不变&#xff09…...

    [paddle] 矩阵的分解

    特征值 设 A A A 是一个 n n n \times n nn 的方阵&#xff0c; λ \lambda λ 是一个标量&#xff0c; v \mathbf{v} v 是一个非零向量。如果满足以下方程&#xff1a; A v λ v A\mathbf{v} \lambda\mathbf{v} Avλv 则称 λ \lambda λ 为矩阵 A A A 的一个 特征值…...

    【基于SprintBoot+Mybatis+Mysql】电脑商城项目之修改密码和个人资料

    &#x1f9f8;安清h&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;【Spring篇】【计算机网络】【Mybatis篇】 &#x1f6a6;作者简介&#xff1a;一个有趣爱睡觉的intp&#xff0c;期待和更多人分享自己所学知识的真诚大学生。 目录 &#x1f383;1.修改密码 -持久…...

    【深度学习】DataLoader自定义数据集制作

    第一步 导包 import os import matplotlib.pyplot as plt %matplotlib inline import numpy as np import torch from torch import nn import torch.optim as optim import torchvision from torchvision import transforms,models,datasets import imageio import time impo…...

    【Elasticsearch】Geo-distance聚合

    geo_distance聚合的形状是圆形。它基于一个中心点&#xff08;origin&#xff09;和一系列距离范围来计算每个文档与中心点的距离&#xff0c;并将文档分配到相应的距离范围内。这种聚合方式本质上是以中心点为圆心&#xff0c;以指定的距离范围为半径的圆形区域来划分数据。 为…...

    【R语言】apply函数族

    在R语言中使用循环操作时是使用自身来实现的&#xff0c;效率较低。所以R语言有一个符合其统计语言出身的特点&#xff1a;向量化。R语言中的向量化运用了底层的C语言&#xff0c;而C语言的效率比高层的R语言的效率高。 apply函数族主要是为了解决数据向量化运算的问题&#x…...

    Vue - shallowRef 和 shallowReactive

    一、shallowRef 和 shallowReactive &#xff08;一&#xff09;shallowRef 在 Vue 3 中&#xff0c;shallowRef 是一个用于创建响应式引用的 API&#xff0c;它与 ref 相似&#xff0c;但它只会使引用的基本类型&#xff08;如对象、数组等&#xff09;表现为响应式&#xf…...

    双目标定与生成深度图

    基于C#联合Halcon实现双目标定整体效果 一&#xff0c;标定 1&#xff0c;标定前准备工作 &#xff08;获取描述文件与获取相机参数&#xff09; 针对标准标定板可以直接调用官方提供描述文件&#xff0c;也可以自己生成描述文件后用PS文件打印 2&#xff0c;相机标定 &…...

    实名制-网络平台集成身份证实名认证接口/身份证查询-PHP

    在当今数字化快速发展的时代&#xff0c;线上平台的安全性和用户体验成为了衡量其成功与否的关键因素。其中&#xff0c;身份证实名认证接口的集成显得尤为重要&#xff0c;它不仅为用户提供了更加安全、可靠的网络环境&#xff0c;同时也增强了平台的信任度和合规性。 对于任…...