当前位置: 首页 > news >正文

【机器学习理论】朴素贝叶斯网络

基础知识:
先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。

后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。

条件概率:条件事件发生后,另一个事件发生的概率。一般的形式为 P ( B ∣ A ) P(B|A) P(BA),表示 A A A发生的条件下 B B B发生的概率。
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac {P(AB)}{P(A)} P(BA)=P(A)P(AB)
贝叶斯公式基于先验概率,计算后验概率的方法;公式为:
P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) = \frac {P(B|A) \cdot P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

  • P ( A ∣ B ) P(A∣B) P(AB): 在事件  B B B 发生的条件下,事件  A A A 发生的概率(后验概率)。
  • P ( B ∣ A ) P(B | A) P(BA):在事件 A A A 发生的条件下,事件 B B B 的发生概率(似然概率)。
  • P ( A ) P(A) P(A):事件 A A A 发生的先验概率(先验知识)。
  • P ( B ) P(B) P(B):事件 B B B 发生的总概率。

贝叶斯公式可以从条件概率和全概率公式推导得出:

  1. 条件概率定义:
    P ( A ∣ B ) = P ( A ∩ B ) P ( B ) , P ( B ∣ A ) = P ( A ∩ B ) P ( A ) P(A | B) = \frac {P(A \cap B)}{P(B)}, P(B|A) = \frac {P(A \cap B)}{P(A)} P(AB)=P(B)P(AB),P(BA)=P(A)P(AB)
  2. 公式联立:
    P ( A ∩ B ) = P ( B ∣ A ) ⋅ P ( A ) = P ( A ∣ B ) ⋅ P ( B ) P(A \cap B) = P(B|A) \cdot P(A) = P(A | B) \cdot P(B) P(AB)=P(BA)P(A)=P(AB)P(B)
  3. 整理得到贝叶斯公式:
    P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A | B) = \frac {P(B | A) P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)
  • 贝叶斯公式:将先验概率  P ( A ) P(A) P(A)、似然概率  P ( B ∣ A ) P(B∣A) P(BA) 和证据  P ( B ) P(B) P(B) 结合,计算后验概率 P ( A ∣ B ) P(A∣B) P(AB)

朴素贝叶斯做出了一个假设”属性条件独立假设“:对所有已知标签的样本,假设每个属性独立地对标签结果产生影响。(这是一个很强的条件)

假设样本为: x = { a 1 , a 2 , . . . , a d } x=\{a_{1}, a_{2}, ..., a_{d} \} x={a1,a2,...,ad},label为 Y = { c 1 , c 2 , c 3 , . . . , c n } Y = \{c_{1}, c_{2}, c_{3}, ...,c_{n} \} Y={c1,c2,c3,...,cn};则计算这样一个样本 x x x 的所属类别的公式为:
P ( c k ∣ x ) = max ⁡ { P ( c 1 ∣ x ) , P ( c 2 ∣ x ) , P ( c 3 ∣ x ) , . . . , P ( c n ∣ x ) } P(c_{k} | x) = \max \{ P(c_{1} |x), P(c_{2} | x), P(c_{3} | x), ..., P(c_{n} |x)\} P(ckx)=max{P(c1x),P(c2x),P(c3x),...,P(cnx)}
基于条件独立假设;可以得到
P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c|x) = \frac {P(c)P(x|c)}{P(x)} = \frac {P(c)}{P(x)} \prod_{i=1}^{d} P(x_{i}|c) P(cx)=P(x)P(c)P(xc)=P(x)P(c)i=1dP(xic)
其中 d d d为属性数目, x i x_{i} xi x x x 在第 i i i 个属性上的取值。
我们重写上述公式:
h n b ( x ) = max ⁡ { P ( c 1 ∣ x ) , P ( c 2 ∣ x ) , P ( c 3 ∣ x ) , . . . , P ( c n ∣ x ) } = arg ⁡ max ⁡ c ∈ Y P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ C ) = arg ⁡ max ⁡ c ∈ Y P ( c ) ∏ i = 1 d P ( x i ∣ C ) \begin{align} h_{nb}(x) &= \max \{ P(c_{1} |x), P(c_{2} | x), P(c_{3} | x), ..., P(c_{n} |x)\} \\ &= \arg \max_{c \in Y} \frac {P(c)}{P(x)} \prod_{i=1}^{d}P(x_{i} | C) \\ &= \arg \max_{c \in Y} P(c) \prod_{i=1}^{d}P(x_{i} | C) \end{align} hnb(x)=max{P(c1x),P(c2x),P(c3x),...,P(cnx)}=argcYmaxP(x)P(c)i=1dP(xiC)=argcYmaxP(c)i=1dP(xiC) D c D_{c} Dc 表示训练集 D D D 中第 c c c 类样本组成的集合,若有充足的独立同分布样本,则可以容易地估计出类别的先验概率:
P ( c ) = ∣ D c ∣ ∣ D ∣ P(c) = \frac {|D_{c}|}{|D|} P(c)=DDc
对于离散属性而言,令 D c , x i D_{c, x_{i}} Dc,xi 表示 D c D_{c} Dc 中第 i i i 个属性上取值为 x i x_{i} xi 的样本组成的集合,则条件概率 P ( x i ∣ c ) P(x_{i} |c) P(xic) 可估计为:
P x i ∣ c = ∣ D c , x i ∣ ∣ D c ∣ P{x_{i} | c} = \frac {|D_{c, x_{i}}|}{|D_{c}|} Pxic=DcDc,xi
对于连续属性可考虑概率密度函数,假定 p ( x i ∣ c ) ∼ N ( μ c , i , σ c , i 2 ) p(x_{i}|c) \sim \mathcal{N}(\mu _{c, i}, \sigma _{c,i}^{2}) p(xic)N(μc,i,σc,i2)d,其中 μ c , i \mu_{c, i} μc,i σ c , i 2 \sigma_{c, i}^{2} σc,i2分别是第 c c c 类样本在第 i i i 个属性上取值的均值和方差,则有:
p ( x i ∣ c ) = 1 2 π σ c , i exp ⁡ ( − ( x i − μ c , i ) 2 2 σ c , i 2 ) p(x_{i} | c) = \frac {1}{\sqrt{2 \pi} \sigma_{c, i}} \exp (- \frac {(x_{i}-\mu_{c, i})^2}{2 \sigma_{c, i}^{2}}) p(xic)=2π σc,i1exp(2σc,i2(xiμc,i)2)

相关文章:

【机器学习理论】朴素贝叶斯网络

基础知识: 先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。 后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。 …...

NPM 使用介绍

NPM 使用介绍 引言 NPM(Node Package Manager)是Node.js生态系统中的一个核心工具,用于管理JavaScript项目的依赖包。无论是开发一个小型脚本还是构建大型应用程序,NPM都能极大地提高开发效率。本文将详细介绍NPM的使用方法,包括安装、配置、依赖管理、包发布等,帮助您…...

langchain 实现多智能体多轮对话

这里写目录标题 工具定义模型选择graph节点函数定义graph 运行 工具定义 import random from typing import Annotated, Literalfrom langchain_core.tools import tool from langchain_core.tools.base import InjectedToolCallId from langgraph.prebuilt import InjectedSt…...

网络攻防实战指北专栏讲解大纲与网络安全法

专栏 本专栏为网络攻防实战指北,大纲如下所示 进度:目前已更完准备篇、HTML基础 计划:所谓基础不牢,地动山摇。所以下一步将持续更新基础篇内容 讲解信息安全时,结合《中华人民共和国网络安全法》(以下简…...

四、jQuery笔记

(一)jQuery概述 jQuery本身是js的一个轻量级的库,封装了一个对象jQuery,jquery的所有语法都在jQuery对象中 浏览器不认识jquery,只渲染html、css和js代码,需要先导入jQuery文件,官网下载即可 jQuery中文说明文档:https://hemin.cn/jq/ (二)jQuery要点 1、jQuery对象 …...

解锁微服务:五大进阶业务场景深度剖析

目录 医疗行业:智能诊疗的加速引擎 电商领域:数据依赖的破局之道 金融行业:运维可观测性的提升之路 物流行业:智慧物流的创新架构 综合业务:服务依赖的优化策略 医疗行业:智能诊疗的加速引擎 在医疗行业迈…...

C++:虚函数与多态性习题2

题目内容: 编写程序,声明抽象基类Shape,由它派生出3个派生类:Circle、Rectangle、Triangle,用虚函数分别计算图形面积,并求它们的和。要求用基类指针数组,使它每一个元素指向一个派生类对象。 …...

开源软件协议介绍

一、可以闭源使用/不具传染性的协议 允许商业使用和分发 1、BSD:详细介绍 2、LGPL许可证:详细介绍 3、MPL2.0:详细介绍 二、具有传染性/使用后需要开源自身软件的协议 不建议商业使用 1、GPL许可证:详细介绍...

MapReduce简单应用(一)——WordCount

目录 1. 执行过程1.1 分割1.2 Map1.3 Combine1.4 Reduce 2. 代码和结果2.1 pom.xml中依赖配置2.2 工具类util2.3 WordCount2.4 结果 参考 1. 执行过程 假设WordCount的两个输入文本text1.txt和text2.txt如下。 Hello World Bye WorldHello Hadoop Bye Hadoop1.1 分割 将每个文…...

【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(三)

目录 1 -> 生命周期 1.1 -> 应用生命周期 1.2 -> 页面生命周期 2 -> 资源限定与访问 2.1 -> 资源限定词 2.2 -> 资源限定词的命名要求 2.3 -> 限定词与设备状态的匹配规则 2.4 -> 引用JS模块内resources资源 3 -> 多语言支持 3.1 -> 定…...

(9) 上:学习与验证 linux 里的 epoll 对象里的 EPOLLIN、 EPOLLHUP 与 EPOLLRDHUP 的不同

(1)经过之前的学习。俺认为结论是这样的,因为三次握手到四次挥手,到 RST 报文,都是 tcp 连接上收到了报文,这都属于读事件。所以: EPOLLIN : 包含了读事件, FIN 报文的正常四次挥手、…...

Avalonia与QtQuick的简单对比

这个是Avalonia开发的示例应用程序(官方入门示例)(Avalonia 11.1.0 .Net 9.0) 刚启动时,内存占用150M左右,稍等一会儿后,内存占用降低到77M左右,CPU占用一直都在,我i9-…...

WebForms DataList 深入解析

WebForms DataList 深入解析 引言 在Web开发领域,控件是构建用户界面(UI)的核心组件。ASP.NET WebForms框架提供了丰富的控件,其中DataList控件是一个灵活且强大的数据绑定控件。本文将深入探讨WebForms DataList控件的功能、用法以及在实际开发中的应用。 DataList控件…...

jetson编译torchvision出现 No such file or directory: ‘:/usr/local/cuda/bin/nvcc‘

文章目录 1. 完整报错2. 解决方法 1. 完整报错 jetson编译torchvision,执行python3 setup.py install --user遇到报错 running build_ext error: [Errno 2] No such file or directory: :/usr/local/cuda/bin/nvcc完整报错信息如下: (pytorch) nxnx-desktop:~/Do…...

《苍穹外卖》项目学习记录-Day10订单状态定时处理

利用Cron表达式生成器生成Cron表达式 1.处理超时订单 查询订单表把超时的订单查询出来&#xff0c;也就是订单的状态为待付款&#xff0c;下单的时间已经超过了15分钟。 //select * from orders where status ? and order_time < (当前时间 - 15分钟) 遍历集合把数据库…...

“新月智能武器系统”CIWS,开启智能武器的新纪元

新月人物传记&#xff1a;人物传记之新月篇-CSDN博客 相关文章链接&#xff1a;星际战争模拟系统&#xff1a;新月的编程之道-CSDN博客 新月智能护甲系统CMIA--未来战场的守护者-CSDN博客 “新月之智”智能战术头盔系统&#xff08;CITHS&#xff09;-CSDN博客 目录 智能武…...

FPGA| 使用Quartus II报错Top-level design entity ““ is undefined

1、使用FPGA准备点亮LED测试下板子&#xff0c;发现这个报错Error (12007): Top-level design entity "LEDLED" is undefined 工程如上图 报错如下图 2、分析到原因是因为工程名称和顶层模块里面的module名称不一样导致 解决办法&#xff1a;修改module名称和顶层模…...

如何实现滑动列表功能

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了沉浸式状态栏相关的内容&#xff0c;本章回中将介绍SliverList组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1 概念介绍 我们在这里介绍的SliverList组件是一种列表类组件&#xff0c;类似我们之前介…...

数据结构:优先级队列—堆

一、优先级队列 1、优先级队列概念 优先级队列&#xff0c;听名字我们就知道他是一种队列&#xff0c;队列在前面我们已经学习过了&#xff0c;它是一种先进先出的数据结构&#xff0c;但是在特殊的情况下&#xff0c;我们我们队列中元素是带有一定优先级的&#xff0c;它需要…...

SpringCloud系列教程:微服务的未来(十八)雪崩问题、服务保护方案、Sentinel快速入门

前言 在分布式系统中&#xff0c;雪崩效应&#xff08;Avalanche Effect&#xff09;是一种常见的故障现象&#xff0c;通常发生在系统中某个组件出现故障时&#xff0c;导致其他组件级联失败&#xff0c;最终引发整个系统的崩溃。为了有效应对雪崩效应&#xff0c;服务保护方…...

Java小白入门教程:Object

目录 一、定义 二、作用 三、使用场景 四、语法以及示例 1、创建Object类型的对象 2、使用 toString()方法 3、使用 equals()方法 4、使用 hashCode()方法 5、使用 getClass()方法 6、使用 clone()方法 7、使用 finalize()方法 一、定义 在Java中&#xff0c; object…...

ubuntu 更新24LTS中断导致“系统出错且无法恢复,请联系系统管理员”

22LTS to 24LTS 更新过程中手jian把更新程序controlC导致的。 解决 目前企图完成更新来恢复&#xff0c;重启后有软件包冲突&#xff0c;sudo apt upgrade报冲突。无法进行。 将原来source.list重新 sudo dpkg --configure -a sudo apt install -f 这些都不管用。还是显示gno…...

【单细胞第二节:单细胞示例数据分析-GSE218208】

GSE218208 1.创建Seurat对象 #untar(“GSE218208_RAW.tar”) rm(list ls()) a data.table::fread("GSM6736629_10x-PBMC-1_ds0.1974_CountMatrix.tsv.gz",data.table F) a[1:4,1:4] library(tidyverse) a$alias:gene str_split(a$alias:gene,":",si…...

ComfyUI安装调用DeepSeek——DeepSeek多模态之图形模型安装问题解决(ComfyUI-Janus-Pro)

ComfyUI 的 Janus-Pro 节点&#xff0c;一个统一的多模态理解和生成框架。 试用&#xff1a; https://huggingface.co/spaces/deepseek-ai/Janus-1.3B https://huggingface.co/spaces/deepseek-ai/Janus-Pro-7B https://huggingface.co/spaces/deepseek-ai/JanusFlow-1.3B 安装…...

FLTK - FLTK1.4.1 - demo - bitmap

文章目录 FLTK - FLTK1.4.1 - demo - bitmap概述笔记END FLTK - FLTK1.4.1 - demo - bitmap 概述 // 功能 : 演示位图数据在按钮上的显示 // * 以按钮为范围或者以窗口为范围移动 // * 上下左右, 文字和图像的相对位置 // 失能按钮&#xff0c;使能按钮 // 知识点 // FLTK可…...

网络安全技术简介

网络安全技术简介 随着信息技术的迅猛发展&#xff0c;互联网已经成为人们日常生活和工作中不可或缺的一部分。与此同时&#xff0c;网络安全问题也日益凸显&#xff0c;成为全球关注的焦点。无论是个人隐私泄露、企业数据被盗取还是国家信息安全受到威胁&#xff0c;都与网络…...

2025.2.1——四、php_rce RCE漏洞|PHP框架

题目来源&#xff1a;攻防世界 php_rce 目录 一、打开靶机&#xff0c;整理信息 二、解题思路 step 1&#xff1a;PHP框架漏洞以及RCE漏洞信息 1.PHP常用框架 2.RCE远程命令执行 step 2&#xff1a;根据靶机提示&#xff0c;寻找版本漏洞 step 3&#xff1a;进行攻击…...

Upscayl-官方开源免费图像AI增强软件

upscayl 链接&#xff1a;https://pan.xunlei.com/s/VOI0Szqe0fCwSSUSS8zRqKf7A1?pwdhefi#...

【LeetCode 刷题】二叉树-公共祖先

此博客为《代码随想录》二叉树章节的学习笔记&#xff0c;主要内容为二叉树公共祖先问题相关的题目解析。 文章目录 236. 二叉树的最近公共祖先235. 二叉搜索树的最近公共祖先 236. 二叉树的最近公共祖先 题目链接 class Solution:def lowestCommonAncestor(self, root: Tre…...

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操 Janus-Pro-7B介绍 Janus-Pro-7B 是由 DeepSeek 开发的多模态 AI 模型&#xff0c;它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本&#xff0c;还可以处理图像等其他模态的信息。 模型主要特点:Permalink…...

群晖搭建Gitea教程(使用系统自带的postgresql)

基于群晖7.2.2&#xff0c;使用套件中心的gitea&#xff0c;和系统自带的postgresql postgresql: 切换到postgres用户 sudo -I -u postgres 在想要保存数据库的磁盘路径下创建PostgreSql文件夹 初始化数据库文件夹配置 initdb -D ./PostgreSql 备份./PostgreSql路径下的post…...

洛谷 P8724 [蓝桥杯 2020 省 AB3] 限高杆

洛谷题目传送门 题目描述 某市有 n 个路口&#xff0c;有 m 段道路连接这些路口&#xff0c;组成了该市的公路系统。其中一段道路两端一定连接两个不同的路口。道路中间不会穿过路口。 由于各种原因&#xff0c;在一部分道路的中间设置了一些限高杆&#xff0c;有限高杆的路…...

DeepSeek文生图模型Janus-Pro论文解读 —— 多模态AI的革命?

介绍 整个AI行业仍在适应最近发布的、震惊人工智能领域的 DeepSeek-R1。1月28日除夕当天的凌晨&#xff0c;DeepSeek 又发布了另一款出色的开源模型 Janus-Pro。这一次&#xff0c;它是一款能与其他顶级多模态模型相媲美的多模态人工智能模型。 在本文中&#xff0c;我们将解…...

C语言:整型提升

一&#xff0c; 整型提升 C语⾔中整型算术运算总是⾄少以缺省&#xff08;默认&#xff09;整型类型的精度来进⾏的。 为了获得这个精度&#xff0c;表达式中的字符和短整型操作数在使⽤之前被转换为普通整型&#xff0c;这种转换称为整型提升。 整型提升的意义&#xff1a; …...

DRM系列六:Drm之KMS

KMS&#xff08;Kernel Mode Setting&#xff09;是负责显示输出的核心组件&#xff0c;它处理与plane、crtc、encoder和connector相关的各项任务。简单来说&#xff0c;KMS就是结构体drm_mode_config、drm_mode_object和组件&#xff08;object&#xff09;的结合。 KMSdrm_m…...

前端 Vue 性能提升策略

一、引言 前端性能优化是确保 Web 应用快速响应和流畅用户体验的关键。对于使用 Vue.js 构建的应用,性能优化不仅涉及通用的前端技术,还包括针对 Vue 特性的特定优化措施。本文将从多个方面探讨如何全面提升前端和 Vue 应用的性能。 二、前端性能优化基础 1. 减少初始加载…...

【C语言】static关键字的三种用法

【C语言】static关键字的三种用法 C语言中的static关键字是一个存储类说明符&#xff0c;它可以用来修饰变量和函数。static关键字的主要作用是控制变量或函数的生命周期和可见性。以下是static关键字的一些主要用法和含义&#xff1a; 局部静态变量&#xff1a; 当static修饰…...

数仓实战项目,大数据数仓实战(离线数仓+实时数仓)

1.课程目标 2.电商行业与电商系统介绍 3.数仓项目整体技术架构介绍 4.数仓项目架构-kylin补充 5.数仓具体技术介绍与项目环境介绍 6.kettle的介绍与安装 7.kettle入门案例 这个连线是点击shift键&#xff0c;然后鼠标左键拖动 ctrls保存一下 csv输入配置 Excel输出配置 配置完 …...

Unity安装教学与相关问题

文章目录 1. 前言2.Unity Hub2.1 下载Unity Hub2.2 安装Unity Hub2.3 注册Unity账号2.4 在Hub上登录账号2.5 在Hub上获取许可证 3. 下载并安装Unity3.1 从Unity Hub下载&#xff08;推荐&#xff09;3.1.1 选择下载版本3.1.2 选择下载组件3.1.3 安装Visual Studio Community 20…...

Linux_线程同步生产者消费者模型

同步的相关概念 同步&#xff1a;在保证数据安全的前提下&#xff0c;让线程能够按照某种特定的顺序访问临界资源&#xff0c;从而有效避免饥饿问题&#xff0c;叫做同步竞态条件&#xff1a;因为时序问题&#xff0c;而导致程序异常&#xff0c;我们称之为竞态条件。 同步的…...

边缘检测算法(candy)

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 Canny 边缘检测的步骤 1. 灰度转换 如果输入的是彩色图像&#xff0c;则需要先转换为 灰度图像&#xff0c;因为边缘检测通常在单通道图像上进行。 2. 高斯滤波&#xff08;Gaussian Blur&#xff09; 由于边缘…...

Hot100之双指针

283移动零 题目 思路解析 那我们就把不为0的数字都放在数组前面&#xff0c;然后数组后面的数字都为0就行了 代码 class Solution {public void moveZeroes(int[] nums) {int left 0;for (int num : nums) {if (num ! 0) {nums[left] num;// left最后会变成数组中不为0的数…...

租房管理系统实现智能化租赁提升用户体验与运营效率

内容概要 在当今快速发展的租赁市场中&#xff0c;租房管理系统的智能化转型显得尤为重要。它不仅帮助房东和租客之间建立更高效的沟通桥梁&#xff0c;还优化了整个租赁流程。通过智能化技术&#xff0c;这套系统能够自动处理资产管理、合同签署、财务管理等所有关键环节。这…...

spring和Mybatis的逆向工程

在现代企业级开发中&#xff0c;使用Spring和MyBatis进行快速、高效的数据库操作是非常常见的。本文将深入探讨如何使用Spring和MyBatis进行逆向工程&#xff0c;帮助开发者自动生成数据库相关的代码&#xff0c;提高开发效率和代码质量。 一、什么是逆向工程 逆向工程是指从…...

计算机网络 IP 网络层 2 (重置版)

IP的简介&#xff1a; IP 地址是互联网协议地址&#xff08;Internet Protocol Address&#xff09;的简称&#xff0c;是分配给连接到互联网的设备的唯一标识符&#xff0c;用于在网络中定位和通信。 IP编制的历史阶段&#xff1a; 1&#xff0c;分类的IP地址&#xff1a; …...

松灵机器人 scout ros2 驱动 安装

必须使用 ubuntu22 必须使用 链接的humble版本 #打开can 口 sudo modprobe gs_usbsudo ip link set can0 up type can bitrate 500000sudo ip link set can0 up type can bitrate 500000sudo apt install can-utilscandump can0mkdir -p ~/ros2_ws/srccd ~/ros2_ws/src git cl…...

【Leetcode 每日一题】541. 反转字符串 II

问题背景 给定一个字符串 s s s 和一个整数 k k k&#xff0c;从字符串开头算起&#xff0c;每计数至 2 k 2k 2k 个字符&#xff0c;就反转这 2 k 2k 2k 字符中的前 k k k 个字符。 如果剩余字符少于 k k k 个&#xff0c;则将剩余字符全部反转。如果剩余字符小于 2 k…...

掌握API和控制点(从Java到JNI接口)_35 JNI开发与NDK 03

3、 如何载入 .so档案 VM的角色 由于Android的应用层级类别都是以Java撰写的&#xff0c;这些Java类别转译为Dex型式的Bytecode之后&#xff0c;必须仰赖Dalvik虚拟机器(VM: Virtual Machine)来执行之。 VM在Android平台里&#xff0c;扮演很重要的角色。此外&#xff0c;在执…...

解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩

解锁豆瓣高清海报(二): 使用 OpenCV 拼接和压缩 脚本地址: 项目地址: Gazer PixelWeaver.py pixel_squeezer_cv2.py 前瞻 继上一篇“解锁豆瓣高清海报(一) 深度爬虫与requests进阶之路”成功爬取豆瓣电影海报之后&#xff0c;本文将介绍如何使用 OpenCV 对这些海报进行智…...

【C/C++】Windows SAPI自实现文字转语音

本文通过封装Windows SAPI&#xff08;Speech Application Programming Interface&#xff09;&#xff0c;提供了一个现代化的C接口实现文字转语音功能。主要特性包括支持同步/异步语音合成、可调节语速&#xff08;-10到10&#xff09;和音量控制&#xff08;0-100%&#xff…...