NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram
结论
Transformer 大于 传统的Seq2Seq 大于 LSTM 大于 RNN 大于 传统的n-gram
n-gram VS Transformer
我们可以用一个 图书馆查询 的类比来解释它们的差异:
一、核心差异对比
维度 | n-gram 模型 | Transformer |
---|---|---|
工作方式 | 固定窗口的"近视观察员" | 全局关联的"侦探" |
依赖距离 | 只能看前N-1个词(如3-gram只看前2词) | 可关注任意距离的上下文 |
语义理解 | 机械统计共现频率 | 理解词语间的深层关系 |
典型场景 | "牛奶要配_" → "饼干"(高频搭配) | "牛奶要配_" → "燕麦"(健康概念关联) |
二、具体差异拆解
1. 观察范围限制
-
n-gram 像用 望远镜片段观察
例:处理句子 "虽然价格贵但质量真的好"-
3-gram只能看到局部组合:
["价格_贵_但", "贵_但_质量", "但_质量_真"]
-
无法关联首尾的 "价格" 和 "质量" 的对比关系
-
-
Transformer 像用 全景扫描仪
通过自注意力机制,让每个词都能关注到句子中所有其他词:# "质量"对"价格"的注意力权重可能高达0.7 # "但"对"虽然"的注意力权重可能达0.6
2. 语义关联能力
-
n-gram 的局限性案例
输入: "苹果股价大涨,因为新品很甜"-
3-gram会错误关联:"新品_很_甜" → 可能预测"西瓜"(高频搭配)
-
无法发现 "苹果" 在此处指公司而非水果
-
-
Transformer 的解决方案
通过上下文注意力权重识别语义:"苹果" ← 关注到 "股价" (权重0.8) → 判定为企业 "甜" ← 关注到 "新品" (权重0.3) + "股价" (权重0.6) → 判定为比喻用法
3. 处理新词能力
-
n-gram 的困境
遇到新词 "元宇宙":-
所有包含 "元宇宙" 的n-gram都成为低频组合
-
导致预测结果不可靠
-
-
Transformer 的优势
通过词向量和注意力机制:-
即使没出现过 "元宇宙",也能根据词根 "元"+"宇宙"_ 推测其语义
-
类似处理过 "元数据" 和 "宇宙探索" 的经验
-
n-gram VS RNN
n-gram 和 RNN 在自然语言处理中是两种截然不同的建模思路,我们可以通过 图书馆管理 的类比来理解它们的核心差异:
一、核心机制对比
维度 | n-gram 模型 | RNN 模型 |
---|---|---|
记忆方式 | 固定长度的纸质笔记 | 可延展的电子备忘录 |
依赖距离 | 只能记住前N-1步(如3-gram记2步) | 理论上可记忆无限步(实际约50-100步) |
计算特征 | 基于统计频次的查表操作 | 基于隐藏状态的动态计算 |
典型表现 | "昨天买的_奶茶"→"珍珠"(高频搭配) | "昨天买的_奶茶"→"已经变质"(因果推理) |
二、工作原理拆解
1. 信息传递方式
-
n-gram 像 接力赛跑
每个预测只依赖前一棒选手(前N-1个词):输入:"我想喝一杯热的" 3-gram预测流程: 想喝→杯 → 喝杯→热 → 杯热→的 → 热的→[END]
-
RNN 像 滚雪球
通过隐藏状态积累历史信息:hidden_state = update("我", init_state) hidden_state = update("想", hidden_state) hidden_state = update("喝", hidden_state) # 当处理到"热"时,隐藏状态已包含"我/想/喝"的信息
3. 处理长距离依赖
-
n-gram 的局限案例
句子:"虽然这款手机价格比同类产品高2000元,但它的_"-
5-gram只能看到"产品高2000元但它的"
-
无法关联开头的"虽然"与结尾的预测
-
-
RNN 的优势体现
通过隐藏状态传递,即使相距20个词:h_("虽然") → h_("价格") → ... → h_("它的") 仍保留着转折关系的语义特征
三、性能对比实验
以 诗歌生成 任务为例:
输入: "春风又绿江南岸"
模型 | 续写结果 | 得分 |
---|---|---|
3-gram | "明月何时照我还"(高频组合) | 合格但缺乏新意 |
RNN | "细雨轻拂柳叶弯"(创新性关联) | 更具文学性 |
人类 | "万物复苏生机盎" | 标准答案 |
关键差异:
-
n-gram依赖"江南岸"与"明月"的常见搭配
-
RNN捕捉到"春风"与"细雨"的意境关联
RNN/LSTM VS Seq2Seq
在序列到序列(Seq2Seq)任务中(如机器翻译、文本摘要等),直接使用RNN后通过全连接层输出(1 to N)看似简单,但存在以下关键问题,而编码器-解码器(Encoder-Decoder)结构通过分步编码和解码的方式有效解决了这些挑战:
1. 序列的时序依赖性
自然语言中的单词顺序至关重要。例如:
-
句子1:
猫追老鼠
-
句子2:
老鼠追猫
两个句子包含相同的词,但含义完全相反。 -
简单词嵌入+全连接的缺陷:
若直接将所有词嵌入拼接成一个向量(如[猫, 追, 老鼠]
→ 一个长向量),模型会丢失词序信息,无法区分两个句子的差异。 -
编码器-解码器的优势:
通过LSTM或Transformer按顺序处理输入词,编码器能够保留词序信息,并在隐藏状态中传递时序依赖关系。
2. 输入和输出的变长问题
在Seq2Seq任务中,输入和输出的长度通常是动态变化的。例如:
-
输入:英文句子
"Hello world"
(2个词) -
输出:中文翻译
"你好世界"
(3个词) -
简单词嵌入+全连接的缺陷:
全连接层需要固定维度的输入和输出,无法处理变长序列。 -
编码器-解码器的优势:
-
编码器可处理任意长度的输入序列,将其压缩为固定长度的上下文向量(
hidden
和cell
)。 -
解码器基于上下文向量逐步生成变长的输出序列(逐词生成,直到预测到
<eos>
)。
-
3. 长距离依赖建模
语言中常存在跨越多个单词的依赖关系。例如:
-
句子:
The cat, which was hungry and had been wandering the streets for days, finally found some food.
主句的主语cat
与谓语found
相隔很远。 -
简单词嵌入+全连接的缺陷:
全连接层难以捕捉长距离依赖(尤其是当句子较长时)。 -
编码器-解码器的优势:
-
LSTM通过门控机制(遗忘门、输入门)逐步更新
cell
状态,传递长期信息。 -
Transformer通过自注意力机制(Self-Attention)直接建模词与词之间的全局依赖。
-
4. 信息压缩与语义表示
编码器的核心作用是将输入序列编码为一个全局语义表示(上下文向量)。
-
简单词嵌入+全连接的缺陷:
直接将所有词嵌入拼接为一个向量,缺乏对整体语义的抽象(相当于“词袋模型”)。 -
编码器-解码器的优势:
-
编码器通过循环或注意力机制逐步融合上下文信息,生成紧凑的语义表示。
-
解码器基于此表示逐步展开生成目标序列,确保输出与输入语义一致。
-
5. 模型效率与参数共享
-
简单词嵌入+全连接的缺陷:
若输入长度为N
,输出长度为M
,全连接层的参数量为(N×embedding_dim) × M
,随序列长度增长迅速膨胀,导致计算成本高且易过拟合。 -
编码器-解码器的优势:
-
LSTM或Transformer通过参数共享(同一层处理所有时间步),参数量仅与隐藏层维度相关,与序列长度无关。
-
例如,LSTM的参数量为
4×(embedding_dim + hidden_dim)×hidden_dim
,与输入长度N
无关。
-
6. 实际案例对比
假设用两种模型处理机器翻译任务:
方案1:简单全连接
-
输入:将源句子所有词嵌入拼接为一个向量(如
N=5
,embedding_dim=256
→ 输入维度1280
)。 -
输出:直接映射到目标语言的词表(如
vocab_size=10000
),参数量为1280×10000 = 12.8M
。 -
问题:
-
无法处理长度变化的输入输出。
-
无法建模词序和长距离依赖。
-
参数量大且难以训练。
-
方案2:编码器-解码器(LSTM)
-
编码器:LSTM逐步处理源序列,输出上下文向量(如
hidden_dim=256
)。 -
解码器:LSTM基于上下文向量逐词生成目标序列。
-
参数量:编码器和解码器的LSTM参数量均为
4×(256+256)×256 ≈ 1M
,总计约2M
。 -
优势:
-
处理变长序列。
-
建模词序和长距离依赖。
-
参数量小且高效。
-
总结
编码器-解码器结构通过分步编码和解码,解决了以下核心问题:
-
时序依赖性:保留词序信息。
-
变长序列处理:动态生成输出。
-
长距离依赖建模:通过LSTM或注意力机制捕捉全局关系。
-
语义压缩与传递:生成紧凑的上下文表示。
-
模型效率:参数共享降低计算成本。
相关文章:
NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram
结论 Transformer 大于 传统的Seq2Seq 大于 LSTM 大于 RNN 大于 传统的n-gram n-gram VS Transformer 我们可以用一个 图书馆查询 的类比来解释它们的差异: 一、核心差异对比 维度n-gram 模型Transformer工作方式固定窗口的"近视观察员"全局关联的&q…...
接口技术-第5次作业
目录 作业内容 解答 一、填空题 二、综合题 1.采用AD570通过82C55A与CPU接口,82C55A的端口地址为300H~303H,完成用查询方式采集250个数据,送到2000H开始的存储单元存储。绘制电路连接图(AD570的4种主要信号线都要标出)。 2…...
实战技巧:如何快速提高网站的收录比例?
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/28.html 快速提高网站的收录比例是网站优化中的重要目标之一。以下是一些实战技巧,可以帮助你实现这一目标: 一、内容优化 高质量原创内容: 确保网站内…...
WEB集群6-10天
第六天 nginx编译安装 全新的进行编译安装 [rootweb-1 ~]# mkdir /nginx [rootweb-1 ~]# cd /nginx/ [rootweb-1 nginx]# ls [rootweb-1 nginx]#curl -O https://nginx.org/download/nginx-1.26.1.tar.gz解压源码包 [rootweb-1 nginx]#tar xf nginx-1.26.1.tar.gz [rootw…...
10.共享内存 信号量集 消息队列
10.共享内存 信号量集 消息队列 **1. IPC对象操作通用框架****2. 共享内存(Shared Memory)****3. 信号量集(Semaphore)****4. 消息队列(Message Queue)****5. 练习与作业****6. 总结** 1. IPC对象操作通用框…...
玩转大语言模型——使用langchain和Ollama本地部署大语言模型
系列文章目录 玩转大语言模型——使用langchain和Ollama本地部署大语言模型 玩转大语言模型——ollama导入huggingface下载的模型 玩转大语言模型——langchain调用ollama视觉多模态语言模型 玩转大语言模型——使用GraphRAGOllama构建知识图谱 玩转大语言模型——完美解决Gra…...
数据结构与算法学习笔记----容斥原理
数据结构与算法学习笔记----容斥原理 author: 明月清了个风 first publish time: 2025.1.30 ps⭐️介绍了容斥原理的相关内容以及一道对应的应用例题。 Acwing 890. 能被整除的数 [原题链接](890. 能被整除的数 - AcWing题库) 给定一个整数 n n n和 m m m个不同的质数 p 1 …...
Appium介绍
在使用不同版本的Appium包进行自动化测试时,出现警告问题可能是由于版本不兼容、配置不正确等原因导致的。下面将详细介绍解决这些问题的步骤,确保模拟器能够正常启动,并能在Appium查看器中同步显示。 1. 环境准备 首先,确保你已…...
doris:Bitmap
BITMAP 类型可以在 Duplicate 表、Unique 表、Aggregate 表中使用,只能作为 Key 类,无法作为 Value 列使用。在 Aggregate 表中使用 BITMAP 类型,其建表时必须使用聚合类型 BITMAP_UNION。用户不需要指定长度和默认值。长度根据数据的聚合程度…...
gitee——报错修改本地密码
有时候当我们向远端push本地的仓库时会有一些报错的行为。 如下: 这是因为我们在gitee修改了密码时,本地还没有更新提交,总是报错 解决修改密码报错 如下: 1.在本地点击搜索栏找到控制面板 步骤如下...
Leetcode 45. 跳跃游戏 II
这题是一个动态规划问题,首先我先说一下自己的动态规划解题步骤: 1,首先需要明确动态规划数组的含义:这个是根据题目来定的,这一个题目的数组含义:dp【i】指的是从0跳到i所需要的最小的步骤。 2ÿ…...
ROS2---基础操作
工作空间(workspace) workspace是一个存放项目开发相关文件的文件夹。例如我们要开发一个机器人,我们可以创建一个工作空间,然后存放这个机器人不同功能的包(感知(雷达,相机等),运动࿰…...
【Leetcode 每日一题】350. 两个数组的交集 II
问题背景 给你两个整数数组 n u m s 1 nums_1 nums1 和 n u m s 2 nums_2 nums2,请你以数组形式返回两数组的交集。返回结果中每个元素出现的次数,应与元素在两个数组中都出现的次数一致(如果出现次数不一致,则考虑取较小值…...
第13章 深入volatile关键字(Java高并发编程详解:多线程与系统设计)
1.并发编程的三个重要特性 并发编程有三个至关重要的特性,分别是原子性、有序性和可见性 1.1 原子性 所谓原子性是指在一次的操作或者多次操作中,要么所有的操作全部都得到了执行并 且不会受到任何因素的干扰而中断,要么所有的操作都不执行…...
STM32 PWMI模式测频率占空比
接线图: PWMI基本结构 代码配置: 与上一章输入捕获代码一样,根据结构体,需要在输入捕获单元再配置一个通道。我们调用一个函数 这个函数可以给结构体赋值,当我们定义了一遍结构体参数,再调用这个函数&…...
无心剑七绝《恭贺新春》
七绝恭贺新春 软件通灵万象真 生机繁茂绘星辰 智联世界情不尽 系统更新又一春 2025年1月29日 平水韵十一真平韵 无心剑七绝《恭贺新春》以“软件生态”为题旨,巧妙融入新春喜庆氛围,展现出科技与自然和谐共生的意境。首句“软件通灵万象真”,…...
低代码产品表单渲染架构
在React和Vue没有流行起来的时候,低代码产品的表单渲染设计通常会使用操作Dom的方式实现。 下面是一个表单的例子: 产品层 用户通过打开表单,使用不同业务场景业务下的表单页面,中间的Render层就是技术实现。 每一个不同业务的表单…...
allegro修改封闭图形线宽
说在前面 我们先把最优解说在前面,然后后面再说如果当时不熟悉软件的时候为了挖孔是用了shapes该怎么修改回来。 挖空最方便的方式是在cutout层画一个圆弧,下面开始图解,先add一个圆弧 z 最好是在画的时候就选择好层,如果忘记了后续再换回去也行,但好像软件有bug,此处并…...
C++实现2025刘谦魔术(勺子 筷子 杯子)
目录 1、魔术步骤 2、C代码 2.1、定义物品 2.2、枚举初始顺序 2.3、进行step2筷子交换 2.4、进行step3杯子交换 2.5、进行step4勺子交换 3、运行结果 4、全部源码 又是一年春晚啦,今年比较期待的是刘谦的魔术表演,现在用C实现刘谦的第一个魔术&…...
Leetcode:219
1,题目 2,思路 第一种就是简单的暴力比对当时过年没细想 第二种: 用Map的特性key唯一,把数组的值作为Map的key值我们每加载一个元素都会去判断这个元素在Map里面存在与否如果存在进行第二个判断条件abs(i-j)<k,条件 符合直接…...
SpringBoot+Vue的理解(含axios/ajax)-前后端交互前端篇
文章目录 引言SpringBootThymeleafVueSpringBootSpringBootVue(前端)axios/ajaxVue作用响应式动态绑定单页面应用SPA前端路由 前端路由URL和后端API URL的区别前端路由的数据从哪里来的 Vue和只用三件套axios区别 关于地址栏url和axios请求不一致VueJSPS…...
小米CR6606,CR6608,CR6609 启用SSH和刷入OpenWRT 23.05.5
闲鱼上收了一台CR6606和一台CR6609, 一直没时间研究, 趁春节假期把这两个都刷成 OpenWRT 配置说明 CPU: MT7621AT,双核880MHz内存: NT5CC128M16JR-EKI 或 M15T2G16128A, 256MB闪存: F59L1G81MB, 128MB无线基带芯片(BB): T7905DAN无线射频芯片(RF): MT7975DN无外置F…...
我的求职面经:(2)C++中空指针请使用nullptr不要使用NULL
1. C中NULL定义就是整数字面量0 2. 对于C函数,由于存在重载,使用NULL而不是nullptr可能导致函数走错重载。 3. C中定义NULL为(void* )0,确实是代表空指针。使用时隐式转换成对应的需要类型的空指针。 4. C中void指针…...
Java8_StreamAPI
Stream 1.创建流 1.1 集合创建流 List<String> list List.of("a", "b", "c"); Stream<String> stream list.stream(); stream.forEach(System.out::println);1.2 数组创建流 String[] array {"a","b",&qu…...
[STM32 - 野火] - - - 固件库学习笔记 - - -十二.基本定时器
一、定时器简介 STM32 中的定时器(TIM,Timer)是其最重要的外设之一,广泛用于时间管理、事件计数和控制等应用。 1.1 基本功能 定时功能:TIM定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中…...
信息学奥赛一本通 1606:【 例 1】任务安排 1 | 洛谷 P2365 任务安排
【题目链接】 ybt 1606:【 例 1】任务安排 1 洛谷 P2365 任务安排 【题目考点】 1. 动态规划:线性动规 【解题思路】 可以先了解法1,虽然不是正解,但该解法只使用了动规的基本思路,易于理解,有助于理解…...
【解决方案】MuMu模拟器移植系统进度条卡住98%无法打开
之前在Vmware虚拟机里配置了mumu模拟器,现在想要移植到宿主机中 1、虚拟机中的MuMu模拟器12-1是目标系统,对应的目录如下 C:\Program Files\Netease\MuMu Player 12\vms\MuMuPlayer-12.0-1 2、Vmware-虚拟机-设置-选项,启用共享文件夹 3、复…...
【C语言】预处理详解
他们想要逃避工作的压迫,却又被功绩社会深植的价值观绑架。 前言 这是我自己学习C语言的第九篇博客总结。后期我会继续把C语言学习笔记开源至博客上。 上一期笔记是关于C语言的编译链接,没看的同学可以过去看看: 【C语言】编译链接_c 读取一行…...
设计模式Python版 适配器模式
文章目录 前言一、适配器模式二、适配器模式实现三、适配器模式在Django中的应用 前言 GOF设计模式分三大类: 创建型模式:关注对象的创建过程,包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式&…...
系统思考—蝴蝶效应
“个体行为的微小差异,可能在系统中引发巨大且不可预测的结果。” — 诺贝尔经济学得主托马斯谢林 我们常说,小变动带来大影响,这种现象,在复杂系统理论中被称为“蝴蝶效应”:即使极小的变化,也能在动态系…...
使用Edu邮箱申请一年免费的.me域名
所需材料:公立Edu教育邮箱一枚(P.S:该服务不支持所有的Edu教育邮箱,仅支持比较知名的院校) 说到域名,.me这个后缀可谓是个性十足,适合个人网站、博客等。.me是黑山的国家顶级域名(c…...
【开源免费】基于SpringBoot+Vue.JS体育馆管理系统(JAVA毕业设计)
本文项目编号 T 165 ,文末自助获取源码 \color{red}{T165,文末自助获取源码} T165,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
C++ ——— 仿函数
目录 何为仿函数 仿函数和模板的配合使用 何为仿函数 代码演示: class Add { public:int operator()(int x, int y){return x y;} }; 这是一个 Add 类,类里面有一个公有成员函数重载,重载的是括号 那么调用的时候: Add ad…...
基于FPGA的BT656解码
概述 BT656全称为“ITU-R BT.656-4”或简称“BT656”,是一种用于数字视频传输的接口标准。它规定了数字视频信号的编码方式、传输格式以及接口电气特性。在物理层面上,BT656接口通常包含10根线(在某些应用中可能略有不同,但标准配置为10根)。这些线分别用于传输视频数据、…...
【Proteus仿真】【51单片机】简易计算器系统设计
目录 一、主要功能 二、使用步骤 三、硬件资源 四、软件设计 五、实验现象 联系作者 一、主要功能 1、LCD1602液晶显示 2、矩阵按键 3、可以进行简单的加减乘除运算 4、最大 9999*9999 二、使用步骤 系统运行后,LCD1602显示数据,通过矩阵按键…...
【16届蓝桥杯寒假刷题营】第1期DAY2
1.能选取元素的最多个数 - 蓝桥云课 问题描述 给定一个长度为 n 的数组 a,小蓝希望从数组中选择若干个元素(可以不连续),并将它们重新排列,使得这些元素 能够形成一个先严格递增然后严格递减的子序列(可以…...
安卓(android)饭堂广播【Android移动开发基础案例教程(第2版)黑马程序员】
一、实验目的(如果代码有错漏,可查看源码) 1.熟悉广播机制的实现流程。 2.掌握广播接收者的创建方式。 3.掌握广播的类型以及自定义官博的创建。 二、实验条件 熟悉广播机制、广播接收者的概念、广播接收者的创建方式、自定广播实现方式以及有…...
linux的/proc 和 /sys目录差异
/proc 和 /sys 都是Linux系统中用于提供系统信息和进行系统配置的虚拟文件系统,但它们的原理并不完全一样,以下是具体分析: 目的与功能 /proc :主要用于提供系统进程相关信息以及内核运行时的一些参数等,可让用户和程…...
使用Navicat Premium管理数据库时,如何关闭事务默认自动提交功能?
使用Navicat Premium管理数据库时,最糟心的事情莫过于事务默认自动提交,也就是你写完语句运行时,它自动执行commit提交至数据库,此时你就无法进行回滚操作。 建议您尝试取消勾选“选项”中的“自动开始事务”,点击“工…...
HTB:Active[RE-WriteUP]
目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用nmap对靶机…...
新春登蛇山:告别岁月,启航未来
大年初一,晨曦透过薄雾,温柔地洒在武汉的大街小巷。2025 年的蛇年春节,带着新春的喜气与希望悄然而至。我站在蛇山脚下,心中涌动着复杂的情感,因为今天,我不仅将与家人一起登山揽胜,更将在这一天…...
如何获取小程序的code在uniapp开发中
如何获取小程序的code在uniapp开发中,也就是本地环境,微信开发者工具中获取code,这里的操作是页面一进入就获取code登录,没有登录页面的交互,所以写在了APP.vue中,也就是小程序一打开就获取用户的code APP.…...
LLM评估与优化技术解析
标题:LLM评估与优化技术解析 文章信息摘要: LLM的评估方法主要包括自动化基准测试、人工评估和基于模型的评估,每种方法各有优缺点。自动化测试快速但难以捕捉细微差别,人工评估细致但成本高,基于模型的评估结合了两者…...
SpringBoot 原理分析
SpringBoot 原理分析 依赖管理相关 启动器 starter Spring Boot 的 Starter 是预定义依赖项集合,可简化 Spring 应用配置与构建,启动时自动引入所需库、配置和功能。 Spring Boot 有很多预定义 Starter,如 spring - boot - starter - web 用…...
go入门Windows环境搭建
简介 Go 即 Golang,是 Google 公司 2009 年 11 月正式对外公开的一门编程语言。 根据 Go 语言开发者自述,近 10 多年,从单机时代的 C 语言到现在互联网时代的 Java,都没有令人满意的开发语言,而 C往往给人的感觉是&a…...
拦截器快速入门及详解
拦截器Interceptor 快速入门 什么是拦截器? 是一种动态拦截方法调用的机制,类似于过滤器。 拦截器是Spring框架中提供的,用来动态拦截控制器方法的执行。 拦截器的作用:拦截请求,在指定方法调用前后,根…...
Fort Firewall:全方位守护网络安全
Fort Firewall是一款专为 Windows 操作系统设计的开源防火墙工具,旨在为用户提供全面的网络安全保护。它基于 Windows 过滤平台(WFP),能够与系统无缝集成,确保高效的网络流量管理和安全防护。该软件支持实时监控网络流…...
第3章 基于三电平空间矢量的中点电位平衡策略
0 前言 在NPC型三电平逆变器的直流侧串联有两组参数规格完全一致的电解电容,由于三电平特殊的中点钳位结构,在进行SVPWM控制时,在一个完整开关周期内,直流侧电容C1、C2充放电不均匀,各自存储的总电荷不同,电容电压便不均等,存在一定的偏差。在不进行控制的情况下,系统无…...
九大服务构建高效 AIOps 平台,全面解决GenAI落地挑战
最近,DevOps运动的联合创始人Patrick Debois分享了他对AI平台与软件研发关系的深刻见解,让我们一起来探讨这个话题。 在AI的落地过程中,我们面临着两个主要难题: 引入AI编码工具后的开发者角色转变:随着像GitHub Copilot这样的AI工具的普及,工程师的角色正在发生深刻变革…...
Leetcode 131 分割回文串(纯DFS)
131. 分割回文串https://leetcode.cn/problems/palindrome-partitioning/https://leetcode.cn/problems/palindrome-partitioning/ 给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。 示例 1:…...