2025年数学建模美赛 A题分析(2)楼梯使用频率数学模型
2025年数学建模美赛 A题分析(1)Testing Time: The Constant Wear On Stairs
2025年数学建模美赛 A题分析(2)楼梯磨损分析模型
2025年数学建模美赛 A题分析(3)楼梯使用方向偏好模型
2025年数学建模美赛 A题分析(4)楼梯使用人数模型
特别提示:
- 本文针对 2025年 A题进行分析,每天不断更新,建议收藏。
- 其它题目的分析详见【youcans 的数学建模课】 专栏。
文章目录
- 2025年数学建模美赛 A题分析(2)楼梯使用频率数学模型
- 1. 问题概述:
- 2. 楼梯使用频率的数学模型
- 2.1 楼梯使用频率数学模型的建立
- 2.2 所需数据与测量方法
- 2.3 假设条件
- 3. 模型推导
- 3.1 基本公式
- 3.2 楼梯总使用人次
- 3.3 时间跨度的单位换算
- 4. 实施步骤
- 4. 模型扩展
- 5. 模型验证
- 6. 模型结论
- 7. 微分方程数值解法
- 7.1 基本概念
- 7.3 scipy.integrate.odeint() 函数
- 7.4 例题 1:求微分方程的数值解
- 7.5 常微分方程的编程步骤
2025年数学建模美赛 A题分析(2)楼梯使用频率数学模型
1. 问题概述:
用于建造台阶的石材和其他材料经受着持续的长期磨损,并且这种磨损可能是不均匀的。
问题的任务是:开发一个模型,通过特定楼梯的磨损模式得出以下基本预测:
- 楼梯使用的频率。
- 使用楼梯时是否更倾向于某一方向。
- 同时使用楼梯的人数(例如,人们是否成对并排爬楼梯,还是单列行走)。
进一步地,假设已经获得楼梯的建造年代、使用方式以及建筑中日常生活模式的估算信息,需要回答以下问题:
- 磨损是否与现有信息一致?
- 楼梯的年龄及其估算的可靠性如何?
- 楼梯是否经历过维修或翻修?
- 能否确定材料的来源?例如,石材的磨损是否与考古学家认为的原始采石场材料一致?若使用木材,其磨损是否与假定使用的树种和年代相符?
- 有关楼梯典型每日使用人数的信息,以及是否有大量人群在短时间内使用,或少量人群长期使用的情况?
2. 楼梯使用频率的数学模型
2.1 楼梯使用频率数学模型的建立
楼梯的使用频率可以通过磨损深度与材料的磨损速率之间的关系推导出来。以下将具体讨论所需数据、假设条件以及模型推导过程。
2.2 所需数据与测量方法
-
必须测量的数据
(1)楼梯表面磨损深度
使用激光扫描或高精度3D建模技术,获取每一级台阶的表面高度变化。
关键指标:磨损深度 (𝑑),以毫米为单位。
(2)楼梯材料的物理特性
硬度,如通过莫氏硬度或布氏硬度测量。
磨损速率 (𝑘):单位人次使用对材料造成的磨损深度(毫米/人次),可通过实验测得。
(3)楼梯使用的时间跨度
建造时间与当前时间的差值(𝑇),以年为单位。 -
非破坏性测量方法
激光扫描技术:测量台阶表面微小的高度变化,精度达到亚毫米级。
材料分析:通过便携式X射线荧光仪(XRF)获取材料成分,结合实验数据确定磨损速率。 -
其他辅助信息
使用的历史记录:如建筑物的使用时间、功能(宗教场所、住宅等)以及可能的高峰使用时期。
2.3 假设条件
-
磨损线性性假设
假设材料的磨损随使用人次呈线性关系,即磨损深度与人次成正比。
合理性:对于硬质材料如石材,这一假设在低应力范围内普遍成立。 -
均匀使用假设
假设楼梯的磨损主要集中在中心区域,所有使用者大致遵循相似的路径。
假设楼梯的磨损随时间均匀分布。 -
无重大维修假设
假设楼梯在建造后未经历大规模维修或翻新。
3. 模型推导
3.1 基本公式
磨损深度(𝑑) 的表达式为:
d = k ∗ N d = k * N d=k∗N
其中:
𝑑:楼梯的平均磨损深度(毫米)。
𝑘:材料的磨损速率(毫米/人次)。
𝑁:楼梯总使用人次。
3.2 楼梯总使用人次
总使用人次 𝑁 可通过以下公式计算:
N = f ⋅ T N=f⋅T N=f⋅T
其中:
𝑓:楼梯的日平均使用频率(人次/天)。
𝑇:楼梯的使用时间(天)。
结合以上两式,得到楼梯日平均使用频率的表达式:
$$ f = \frac{d}{k*T}
3.3 时间跨度的单位换算
若 𝑇 以年为单位,则需要转换为天:
T d a y = T ∗ 365 T_{day} = T*365 Tday=T∗365
4. 实施步骤
-
数据采集
(1)使用激光扫描技术,获取楼梯表面高度数据,计算磨损深度 𝑑。
(2)分析楼梯材料,通过实验获取磨损速率 𝑘。
(3)收集建筑物历史记录,确定楼梯的使用年限 𝑇。 -
参数计算
(1)根据扫描数据,计算每一级台阶的磨损深度 𝑑,取平均值。
(2)使用实验室数据或文献值,确定材料的磨损速率 𝑘。 -
频率计算
将 𝑑、𝑘 和 𝑇 代入公式 f = d k ∗ T f = \frac{d}{k*T} f=k∗Td,计算楼梯的日均使用频率 𝑓。
4. 模型扩展
- 对复杂磨损模式的改进
若楼梯中央和边缘的磨损显著不同,可分区域计算磨损深度,构建更精细的模型:
f = d c e n t e r + d e d g e 2 ∗ k ∗ T f = \frac{d_{center} + d_{edge}}{2*k*T} f=2∗k∗Tdcenter+dedge
- 非均匀使用的时间分布
若历史记录显示某段时间人流量较大,可引入时间权重因子 w ( t ) w(t) w(t),调整模型:
f = 1 T ∫ 0 T d k ∗ w ( t ) d t f = \frac{1}{T} \int^T_0 \frac{d}{k*w(t)} dt f=T1∫0Tk∗w(t)ddt
5. 模型验证
-
实验验证
在实验室中模拟不同频率的磨损,验证磨损深度与使用人次的线性关系。 -
历史数据验证
将模型预测值与历史使用记录对比,验证日均使用频率 𝑓 的合理性。
6. 模型结论
该模型通过分析楼梯磨损深度、材料特性和历史时间,计算出楼梯的日均使用频率。模型的简单线性结构便于应用,并可扩展至处理更复杂的磨损模式。需要注意的是,模型的准确性依赖于材料磨损速率 𝑘 和历史数据的准确性。
7. 微分方程数值解法
7.1 基本概念
微分方程是描述系统的状态随时间和空间演化的数学工具。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。微分方程在化学、工程学、经济学和人口统计等领域也有广泛应用。
具体来说,微分方程是指含有未知函数及其导数的关系式。
- 微分方程按自变量个数分为:只有一个自变量的常微分方程(Ordinary Differential Equations)和包含两个或两个以上独立变量的偏微分方程(Partial Differential Equations)。
- 微分方程按阶数分为:一阶、二阶、高阶,微分方程的阶数取决于方程中最高次导数的阶数。
- 微分方程还可以分为:(非)齐次,常(变)系数,(非)线性,初值问题/边界问题…
求解常微分方程的基本方法,有欧拉法、龙格库塔法等,可以详见各种教材,撰写数模竞赛论文时还是可以抄几段的。本文沿用“编程方案”的概念,不涉及这些算法的具体内容,只探讨如何使用 Python 的工具包、库函数,零基础求解微分方程模型。
我们的选择是 Python 常用工具包三剑客:Scipy、Numpy 和 Matplotlib:
- Scipy 是 Python 算法库和数学工具包,包括最优化、线性代数、积分、插值、特殊函数、傅里叶变换、信号和图像处理、常微分方程求解等模块。有人介绍 Scipy 就是 Python 语言的 Matlab,所以大部分数学建模问题都可以用它搞定。
- Numpy 提供了高维数组的实现与计算的功能,如线性代数运算、傅里叶变换及随机数生成,另外还提供了与 C/C++ 等语言的集成工具。
- Matplotlib 是可视化工具包,可以方便地绘制各种数据可视化图表,如折线图、散点图、直方图、条形图、箱形图、饼图、三维图,等等。
### 7.2 一阶常微分方程(组)模型
给定初始条件的一阶常微分方程(组)的标准形式是:
{ d y d t = f ( y , t ) y ( t 0 ) = y 0 \begin{cases} \begin{aligned} &\frac{dy}{dt} = f(y,t)\\ &y(t_0) = y_0 \end{aligned} \end{cases} ⎩ ⎨ ⎧dtdy=f(y,t)y(t0)=y0
式中的 y 在常微分方程中是标量,在常微分方程组中是数组向量。
7.3 scipy.integrate.odeint() 函数
SciPy 提供了两种方式求解常微分方程:基于 odeint
函数的 API 比较简单易学,基于 ode
类的面向对象的 API 更加灵活。
**scipy.integrate.odeint() **是求解微分方程的具体方法,通过数值积分来求解常微分方程组。在 odeint
函数内部使用 FORTRAN 库 odepack 中的 lsoda,可以求解一阶刚性系统和非刚性系统的初值问题。官网介绍详见: scipy.integrate.odeint — SciPy v1.6.3 Reference Guide 。
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0, tfirst=False)
odeint 的主要参数:
求解标准形式的微分方程(组)主要使用前三个参数:
- func: callable(y, t, …) 导数函数 f ( y , t ) f(y,t) f(y,t) ,即 y 在 t 处的导数,以函数的形式表示
- y0: array: 初始条件 y 0 y_0 y0,对于常微分方程组 y 0 y_0 y0 则为数组向量
- t: array: 求解函数值对应的时间点的序列。序列的第一个元素是与初始条件 y 0 y_0 y0 对应的初始时间 t 0 t_0 t0;时间序列必须是单调递增或单调递减的,允许重复值。
其它参数简介如下:
-
args: 向导数函数 func 传递参数。当导数函数 f ( y , t , p 1 , p 2 , . . ) f(y,t,p1,p2,..) f(y,t,p1,p2,..) 包括可变参数 p1,p2… 时,通过 args =(p1,p2,…) 可以将参数p1,p2… 传递给导数函数 func。argus 的用法参见 2.4 中的实例2。
-
Dfun: func 的雅可比矩阵,行优先。如果 Dfun 未给出,则算法自动推导。
-
col_deriv: 自动推导 Dfun的方式。
-
printmessg: 布尔值。控制是否打印收敛信息。
-
其它参数用于控制求解算法的参数,一般情况可以忽略。
odeint 的主要返回值:
- y: array 数组,形状为 (len(t),len(y0),给出时间序列 t 中每个时刻的 y 值。
7.4 例题 1:求微分方程的数值解
{ d y d t = s i n ( t 2 ) y ( − 10 ) = 1 \begin{cases} \begin{aligned} &\frac{dy}{dt} = sin(t^2)\\ &y(-10) = 1 \end{aligned} \end{cases} ⎩ ⎨ ⎧dtdy=sin(t2)y(−10)=1
7.5 常微分方程的编程步骤
以该题为例讲解 scipy.integrate.odeint() 求解常微分方程初值问题的步骤:
-
导入 scipy、numpy、matplotlib 包;
-
定义导数函数 f ( y , t ) = s i n ( t 2 ) f(y,t)=sin(t^2) f(y,t)=sin(t2) ;
-
定义初值 y 0 y_0 y0 和 y y y 的定义区间 [ t 0 , t ] [t_0,\ t] [t0, t];
-
调用 odeint() 求 y y y 在定义区间 [ t 0 , t ] [t_0,\ t] [t0, t] 的数值解。
Python 例程
# 1. 求解微分方程初值问题(scipy.integrate.odeint)
from scipy.integrate import odeint # 导入 scipy.integrate 模块
import numpy as np
import matplotlib.pyplot as pltdef dy_dt(y, t): # 定义函数 f(y,t)return np.sin(t**2)y0 = [1] # y0 = 1 也可以
t = np.arange(-10,10,0.01) # (start,stop,step)
y = odeint(dy_dt, y0, t) # 求解微分方程初值问题# 绘图
plt.plot(t, y)
plt.title("scipy.integrate.odeint")
plt.show()
例程运行结果
【未完待续,请继续关注】
2025年数学建模美赛 A题分析(3)楼梯方向偏好模型
相关文章:
2025年数学建模美赛 A题分析(2)楼梯使用频率数学模型
2025年数学建模美赛 A题分析(1)Testing Time: The Constant Wear On Stairs 2025年数学建模美赛 A题分析(2)楼梯磨损分析模型 2025年数学建模美赛 A题分析(3)楼梯使用方向偏好模型 2025年数学建模美赛 A题分…...
在Ubuntu上用Llama Factory命令行微调Qwen2.5的简单过程
半年多之前写过一个教程:在Windows上用Llama Factory微调Llama 3的基本操作_llama-factory windows-CSDN博客 如果用命令行做的话,前面的步骤可以参考上面这个博客。安装好环境后, 用自我认知数据集微调Lora模块:data/identity.j…...
虹科分享 | 汽车NVH小课堂之听音辨故障
随着车主开始关注汽车抖动异响问题,如何根据故障现象快速诊断异响来源,成了汽修人的必修课。 一个比较常用的方法就是靠“听”——“听音辨故障”。那今天,虹科Pico也整理了几个不同类型的异响声音,一起来听听看你能答对几个吧 汽…...
RoboVLM——通用机器人策略的VLA设计哲学:如何选择骨干网络、如何构建VLA架构、何时添加跨本体数据
前言 本博客内解读不少VLA模型了,包括π0等,且如此文的开头所说 前两天又重点看了下openvla,和cogact,发现 目前cogACT把openvla的动作预测换成了dit,在模型架构层面上,逼近了π0那为了进一步逼近&#…...
【SpringBoot教程】Spring Boot + MySQL + HikariCP 连接池整合教程
🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 在前面一篇文章中毛毛张介绍了SpringBoot中数据源与数据库连接池相关概念,今天毛毛张要分享的是关于SpringBoot整合HicariCP连接池相关知识点以及底层源码…...
0.91英寸OLED显示屏一种具有小尺寸、高分辨率、低功耗特性的显示器件
0.91英寸OLED显示屏是一种具有小尺寸、高分辨率、低功耗特性的显示器件。以下是对0.91英寸OLED显示屏的详细介绍: 一、基本参数 尺寸:0.91英寸分辨率:通常为128x32像素,意味着显示屏上有128列和32行的像素点,总共409…...
【insert函数】
在 C 中,std::string::insert 是一个功能强大的成员函数,用于在字符串的指定位置插入内容。它有多个重载版本,支持插入 字符、字符串、子字符串 等。以下是 insert 所有相关函数的详细介绍: 1. 插入字符串 函数签名: …...
Python 如何进行文本匹配:difflib| python 小知识
Python 如何进行文本匹配:difflib| python 小知识 difflib是Python标准库中的一个工具,用于比较和处理文本差异。它提供了一组用于比较和处理文本差异的功能,可以用于比较字符串、文件等。本文将详细介绍difflib模块的用法和实现细节&#x…...
MySQL误删数据怎么办?
文章目录 1. 从备份恢复数据2. 通过二进制日志恢复数据3. 使用数据恢复工具4. 利用事务回滚恢复数据5. 预防误删数据的策略总结 在使用MySQL进行数据管理时,误删数据是一个常见且具有高风险的操作。无论是因为操作失误、系统故障,还是不小心执行了删除命…...
可以称之为“yyds”的物联网开源框架有哪几个?
有了物联网的发展,我们的生活似乎也变得更加“鲜活”、有趣、便捷,包具有科技感的。在物联网(IoT)领域中,也有许多优秀的开源框架支持设备连接、数据处理、云服务等,成为被用户们广泛认可的存在。以下给大家…...
为AI聊天工具添加一个知识系统 之74 详细设计之15 正则表达式 之2
本文要点 要点 本项目(为AI聊天工具添加一个知识系统)中的正则表达式。 正则表达式的三“比”。正则表达式被 一、排比为三种符号(元符号-圈号,特殊符号-引号,普通符号-括号) 引号<<a线性回归bo…...
Java 注解与元数据
Java学习资料 Java学习资料 Java学习资料 一、引言 在 Java 编程中,注解(Annotation)和元数据(Metadata)是两个重要的概念。注解为程序提供了一种在代码中嵌入额外信息的方式,这些额外信息就是元数据。元…...
【橘子Kibana】Kibana的分析能力Analytics简易分析
一、kibana是啥,能干嘛 我们经常会用es来实现一些关于检索,关于分析的业务。但是es本身并没有UI,我们只能通过调用api来完成一些能力。而kibana就是他的一个外置UI,你完全可以这么理解。 当我们进入kibana的主页的时候你可以看到这样的布局。…...
度小满前端面试题及参考答案
<form>标签使用过哪些 tag? <form>标签中常使用的标签有很多。 <input>:这是最常用的标签之一,用于创建各种类型的输入字段,如文本框、密码框、单选按钮、复选框、文件上传框等。通过设置type属性来指定输入类型,例如type="text"创建文本输入…...
Padas进行MongoDB数据库CRUD
在数据处理的领域,MongoDB作为一款NoSQL数据库,以其灵活的文档存储结构和高扩展性广泛应用于大规模数据处理场景。Pandas作为Python的核心数据处理库,能够高效处理结构化数据。在MongoDB中,数据以JSON格式存储,这与Pandas的DataFrame结构可以很方便地互相转换。通过这篇教…...
LQ1052 Fibonacci斐波那契数列
题目描述 Fibonacci斐波那契数列也称为兔子数列,它的递推公式为:FnFn-1Fn-2,其中F1F21。 当n比较大时,Fn也非常大,现在小蓝想知道,Fn除以10007的余数是多少,请你编程告诉她。 输入 输入包含一…...
华硕笔记本装win10哪个版本好用分析_华硕笔记本装win10专业版图文教程
华硕笔记本装win10哪个版本好用?华硕笔记本还是建议安装win10专业版。Win分为多个版本,其中家庭版(Home)和专业版(Pro)是用户选择最多的两个版本。win10专业版在功能以及安全性方面有着明显的优势ÿ…...
编译器gcc/g++ --【Linux基础开发工具】
文章目录 一、背景知识二、gcc编译选项1、预处理(进行宏替换)2、编译(生成汇编)3、汇编(生成机器可识别代码)4、链接(生成可执行文件或库文件) 三、动态链接和静态链接四、静态库和动态库1、动静态库2、编译…...
八股文 (一)
文章目录 项目地址一、前端1.1 大文件上传,预览1.2 首页性能优化1.2 流量染色,灰度发布1.3 Websock心跳机制,大数据实时数据优化1.4 Gpu 加速 fps优化1.5 echarts包大小优化和组件封装1.6 前端监控系统1.7 超大虚拟列表卡顿1. 实现2. 相关问题(1) 什么是虚拟化列表,为什么要…...
c语言无符号的变量不能和有符号的直接比较,或者使用移项解决符号问题
使用移项解决问题,简单来说就是无符号运行不要有减号,使用移项后的加号代替 if(uEventDirLimitSize > uEventAndNormalDirSize) {if((uEventDirLimitSize - uEventAndNormalDirSize) > pStConfig->stParam.stUserParam.uEventRemain){return O…...
安卓日常问题杂谈(一)
背景 关于安卓开发中,有很多奇奇怪怪的问题,有时候这个控件闪一下,有时候这个页面移动一下,这些对于快速开发中,去查询,都是很耗费时间的,因此,本系列文章,旨在记录安卓…...
电力晶体管(GTR)全控性器件
电力晶体管(Giant Transistor,GTR)是一种全控性器件,以下是关于它的详细介绍:(模电普通晶体管三极管进行对比学习) 基本概念 GTR是一种耐高电压、大电流的双极结型晶体管(BJT&am…...
【美】Day 1 CPT申请步骤及信息获取指南(Day1 CPT)
参考文章:【美】境外申请Day 1 CPT完整流程(境外Day 1 CPT) 文章目录 **一、申请前准备:了解Day 1 CPT基本要求****二、选择Day 1 CPT学校****1. 搜索学校****2. 筛选标准** **三、申请流程****1. 提交学校申请****2. 转SEVIS记录…...
梯度下降优化算法-动量法
1. 动量法的数学原理 1.1 标准梯度下降回顾 在标准梯度下降中,参数的更新公式为: θ t 1 θ t − η ⋅ ∇ θ J ( θ t ) \theta_{t1} \theta_t - \eta \cdot \nabla_\theta J(\theta_t) θt1θt−η⋅∇θJ(θt) 其中: θ t …...
游戏引擎介绍:Game Engine
简介 定义:软件框架,一系列为开发游戏的工具的集合 可协作创意生产工具,复杂性艺术,注重realtime实时 目的 为艺术家,设计师,程序员设计工具链 游戏引擎开发参考书 推荐:Game Engine Archite…...
zookeeper-3.8.3-基于ACL的访问控制
ZooKeeper基于ACL的访问控制 ZooKeeper 用ACL控制对znode的访问,类似UNIX文件权限,但无znode所有者概念,ACL指定ID及对应权限,且仅作用于特定znode,不递归。 ZooKeeper支持可插拔认证方案,ID格式为scheme…...
ResNeSt: Split-Attention Networks 参考论文
参考文献 [1] Tensorflow Efficientnet. https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet. Accessed: 2020-03-04. 中文翻译:[1] TensorFlow EfficientNet. https://github.com/tensorflow/tpu/tree/master/models/official/efficien…...
正反转电路梯形图
1、正转联锁控制。按下正转按钮SB1→梯形图程序中的正转触点X000闭合→线圈Y000得电→Y000自锁触点闭合,Y000联锁触点断开,Y0端子与COM端子间的内部硬触点闭合→Y000自锁触点闭合,使线圈Y000在X000触点断开后仍可得电。 Y000联锁触点断开&…...
【数据结构】空间复杂度
目录 一、引入空间复杂度的原因 二、空间复杂度的分析 ❥ 2.1 程序运行时内存大小 ~ 程序本身大小 ❥ 2.2 程序运行时内存大小 ~ 算法运行时内存大小 ❥ 2.3 算法运行时内存大小 ❥ 2.4 不考虑算法全部运行空间的原因 三、空间复杂度 ❥ 3.1空间复杂度的定义 ❥ 3.2 空…...
系统学英语 — 句法 — 复合句
目录 文章目录 目录复合句型主语从句宾语从句表语从句定语从句状语从句同位语从句 复合句型 复合句型,即:从句。在英语中,除了谓语之外的所有句子成分都可以使用从句来充当。 主语从句 充当主语的句子,通常位于谓语之前&#x…...
SQL server 数据库使用整理
标题:SQL server 数据库使用整理 1.字符串表名多次查询 2.读取SQL中Json字段中的值:JSON_VALUE(最新版本支持,属性名大小写敏感) 1.字符串表名多次查询 SELECT ROW_NUMBER() OVER (ORDER BY value ASC) rowid,value…...
*胡闹厨房*
前期准备 详细教程 一、创建项目 1、选择Universal 3D,创建项目 2、删除预制文件Readme:点击Remove Readme Assets,弹出框上点击Proceed 3、Edit-Project Setting-Quality,只保留High Fidelity 4、打开 Assets-Settings ,保留URP-HighFidelity-Renderer 和 URP-High…...
.NET 8 项目 Docker 方式部署到 Linux 系统详细操作步骤
本文将详细介绍如何将一个 .NET 8 项目通过 Docker 部署到 Linux 系统中。以下步骤包括从项目的创建、Dockerfile 的编写、镜像构建、到最后在 Linux 上的容器运行。 1. 环境准备 在开始之前,请确保你已经具备以下环境: Linux 系统(如 Ubu…...
状态码对照表
别瞎自定义状态码了 1xx:信息性状态码 状态码名称使用场景100Continue客户端应继续请求,等待后续响应。101Switching Protocols服务器根据客户端的请求切换协议。102Processing服务器正在处理请求,但尚未完成。103Early Hints提供给客户端的…...
【愚公系列】《循序渐进Vue.js 3.x前端开发实践》027-组件的高级配置和嵌套
标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,亚马逊技领云博主,51CTO博客专家等。近期荣誉2022年度…...
Autosar-Os是怎么运行的?(多核系统运行)
写在前面: 入行一段时间了,基于个人理解整理一些东西,如有错误,欢迎各位大佬评论区指正!!! 目录 1.Autosar多核操作系统 1.1多核启动过程 1.2多核运行过程 1.2.1核间任务同步 1.2.2Counte…...
WPF3-在xaml中引用其他程序集的名称空间
1. 如何在XAML里引用类库中的名称空间和类2. 小结 1. 如何在XAML里引用类库中的名称空间和类 首先需要记住一点:把类库引用到项目中是引用其中名称空间的物理基础,无论是C#还是XAML都是这样。 一旦将一个类库引用进程序,就可以引用其中的名…...
无人机红外热成像:应急消防的“透视眼”
无人机红外热成像:应急消防的“透视眼” 亲爱的小伙伴们,每年一到夏天,应急消防的战士们就像上紧了发条的闹钟,时刻准备应对各种灾害。炎热天气让火灾隐患“蹭蹭”往上涨,南北各地还有防洪救灾、台风、泥石流等灾害轮…...
飞牛NAS安装过程中的docker源问题
采用CloudFlare进行飞牛NAS的远程访问 【安全免费】无需公网IP、端口号,NAS外网访问新方法_网络存储_什么值得买 sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<EOF {"registry-mirrors": ["https://docker.1panel.dev&quo…...
python基础语法(4) ----- 学习笔记分享
目录 Python 使用库 以及 实战的一些案例 1. 标准库 1.1 认识标准库 1.2 使用import导入模块 1.3 代码示例:日期及结算 1.4 代码示例:字符串操作 1.5 代码示例 : 文件查找工具 2. 第三方库 2.1 认识第三方库 2.2 使用pip 2.3 代码示例:生成二维码 (1) 使用搜索引擎,…...
Linux 内核学习 3b - 和copilot 讨论pci设备的物理地址在内核空间和用户空间映射到虚拟地址的区别
前提知识: 可以把内核当作一个需要特殊权限运行的程序,那么不同的程序,相同的设备物理地址就会映射到不同的虚拟地址 (见Linux 内核学习 3 - 虚拟内存和物理内存)。 You said 同一个pcie 设备物理地址在linux 内核和用…...
算法【有依赖的背包】
有依赖的背包是指多个物品变成一个复合物品(互斥),每件复合物品不要和怎么要多种可能性展开。时间复杂度O(物品个数 * 背包容量),额外空间复杂度O(背包容量)。 下面通过题目加深理解。 题目一 测试链接:[NOIP2006 提…...
【Linux】 冯诺依曼体系与计算机系统架构全解
Linux相关知识点可以通过点击以下链接进行学习一起加油!初识指令指令进阶权限管理yum包管理与vim编辑器GCC/G编译器make与Makefile自动化构建GDB调试器与Git版本控制工具Linux下进度条 冯诺依曼体系是现代计算机设计的基石,其统一存储和顺序执行理念推动…...
【深度学习】 UNet详解
UNet 是一种经典的卷积神经网络(Convolutional Neural Network, CNN)架构,专为生物医学图像分割任务设计。该模型于 2015 年由 Olaf Ronneberger 等人在论文《U-Net: Convolutional Networks for Biomedical Image Segmentation》中首次提出&…...
“深入浅出”系列之算法篇:(2)openCV、openMV、openGL
OpenCV是一个的跨平台计算机视觉库,可以运行在Linux囚、Windows 和Mac OS操作系统上。它轻量级而且高效,由一系列 C函数和少量C类构成,同时也提供了Python 接口,实现了图像处理和计算机视觉方面的很多通用算法。 OpenMV是一个开源,低成本&am…...
低代码系统-产品架构案例介绍、得帆云(八)
产品名称 得帆云DeCode低代码平台-私有化 得帆云DeMDM主数据管理平台 得帆云DeCode低代码平台-公有云 得帆云DePortal企业门户 得帆云DeFusion融合集成平台 得帆云DeHoop数据中台 名词 概念 云原生 指自己搭建的运维平台,区别于阿里云、腾讯云 Dehoop 指…...
web3py+flask+ganache的智能合约教育平台
最近在学习web3的接口文档,使用web3pyflaskganache写了一个简易的智能合约教育平台,语言用的是python,ganche直接使用的本地区块链网络,用web3py进行交互。 代码逻辑不难,可以私信或者到我的闲鱼号夏沫mds获取我的代码…...
(长期更新)《零基础入门 ArcGIS(ArcMap) 》实验六----流域综合处理(超超超详细!!!)
流域综合处理 流域综合治理是根据流域自然和社会经济状况及区域国民经济发展的要求,以流域水流失治理为中心,以提高生态经济效益和社会经济持续发展为目标,以基本农田优化结构和高效利用及植被建设为重点,建立具有水土保持兼高效生态经济功能的半山区流域综合治理模式。数字高程…...
基于 WPF 平台使用纯 C# 实现动态处理 json 字符串
一、引言 在当今的软件开发领域,数据的交换与存储变得愈发频繁,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,以其简洁、易读、便于解析和生成的特点,被广泛应用于各种应用程序中。在 W…...
DRF开发避坑指南01
在当今快速发展的Web开发领域,Django REST Framework(DRF)以其强大的功能和灵活性成为了众多开发者的首选。然而,错误的使用方法不仅会导致项目进度延误,还可能影响性能和安全性。本文将从我个人本身遇到的相关坑来给大…...