当前位置: 首页 > news >正文

基于 RAMS 的数据驱动建模与应用实践:从理论到具体操作

基于 RAMS 的数据驱动建模与应用实践:从理论到具体操作

RAMS(区域大气建模系统)因其模块化设计、高分辨率模拟能力和广泛的应用领域,成为区域大气建模的强大工具。而数据驱动建模技术的崛起,使得 RAMS 的能力得到进一步扩展。本文将以详细的技术流程为核心,从数据准备、模型优化到结果输出,逐步讲解如何结合数据驱动技术,实现对 RAMS 模型的优化与应用。


1. 数据准备:输入数据的标准化与优化

RAMS 模拟的第一步是准备高质量的输入数据。这些数据通常包括地形、土地利用类型、气象观测数据以及全球大气模式输出。以下是具体操作步骤:

1.1 数据收集
  • 全球气象数据:利用 ERA5、GFS(全球预报系统)等数据源,获取温度、湿度、风速、气压等气象变量。
    • 使用 Python 的 cdsapixarray 库下载和处理 ERA5 数据。
    import cdsapic = cdsapi.Client()
    c.retrieve('reanalysis-era5-single-levels',{'product_type': 'reanalysis','variable': ['2m_temperature', 'surface_pressure'],'year': '2023','month': '01','day': '01','time': '12:00','format': 'netcdf'},'data.nc'
    )
    
  • 遥感数据:下载 MODIS 或 Sentinel-2 数据,用于提取土地利用信息。
    • 使用 Google Earth Engine(GEE) API 处理遥感数据,生成与 RAMS 格点分辨率一致的土地利用分类。
1.2 数据插值与降尺度

如果输入数据的分辨率不符合 RAMS 模拟需求,可以采用以下方法:

  • 插值:使用 Python 的 scipy.interpolate 或 GIS 工具(如 ArcGIS)对观测数据进行空间插值,生成与 RAMS 网格匹配的数据。
  • 降尺度:通过机器学习方法(如随机森林或神经网络)基于粗分辨率数据预测细分辨率气象场。
    from sklearn.ensemble import RandomForestRegressor
    rf = RandomForestRegressor()
    rf.fit(low_res_features, high_res_targets)
    high_res_prediction = rf.predict(new_low_res_features)
    
1.3 数据预处理与异常值检测
  • 清洗与标准化:利用 Pandas 处理缺失值,将所有变量进行归一化(Min-Max 或 Z-score)。
  • 异常检测:采用自动编码器(Autoencoder)检测观测数据中的异常值并剔除。
    from sklearn.preprocessing import MinMaxScaler
    from keras.models import Model, Sequential
    scaler = MinMaxScaler()
    scaled_data = scaler.fit_transform(raw_data)
    

2. 模型参数化:优化 RAMS 的物理过程

RAMS 模型的参数化是数据驱动技术优化的核心环节,涉及复杂物理过程的参数调节。

2.1 参数敏感性分析
  • 目标:识别对模拟结果影响最大的参数(如湍流扩散系数、辐射收支参数)。
  • 实现:使用 Python 的 SALib 库进行全局敏感性分析。
    from SALib.sample import saltelli
    from SALib.analyze import sobolproblem = {'num_vars': 3,'names': ['param1', 'param2', 'param3'],'bounds': [[0.1, 1.0], [0.1, 2.0], [0.01, 0.1]]
    }
    param_values = saltelli.sample(problem, 1000)
    
2.2 参数优化
  • 传统方法:采用网格搜索优化 RAMS 配置文件中的关键参数。
  • 数据驱动方法:使用遗传算法或贝叶斯优化自动搜索最佳参数组合。
    • 示例:利用 scikit-optimize 的贝叶斯优化框架。
    from skopt import gp_minimizedef objective(params):# 运行 RAMS 模型,并返回模拟误差error = run_rams(params)return errorresult = gp_minimize(objective, [(0.1, 1.0), (0.1, 2.0)], n_calls=50)
    print("Best parameters:", result.x)
    

3. 数据同化:观测与模拟的动态融合

数据同化通过将观测数据融入 RAMS 模型,改进模拟的初始场和边界条件。

3.1 基于深度学习的数据同化

传统数据同化方法如 4DVar 或 Kalman 滤波,在处理大规模非线性问题时可能效率不足。结合深度学习的同化框架能够更高效地处理非线性特性。

  • 利用 LSTM 模型构建动态观测误差修正。
    from keras.models import Sequential
    from keras.layers import LSTM, Densemodel = Sequential()
    model.add(LSTM(64, input_shape=(time_steps, features)))
    model.add(Dense(1))
    model.compile(optimizer='adam', loss='mse')
    model.fit(X_train, y_train, epochs=50)
    
3.2 实现混合数据同化

结合观测驱动和模型驱动的方法,如基于深度学习的非线性 Kalman 滤波。


4. 高分辨率模拟与后处理

RAMS 高分辨率模拟的计算成本较高,数据驱动技术可以通过替代或加速物理过程显著提升效率。

4.1 替代计算密集型过程
  • 辐射参数化替代:利用神经网络构建辐射计算的代理模型。
    • 示例:训练一个多层感知机(MLP)替代复杂的辐射传输过程。
    from keras.models import Sequential
    model = Sequential()
    model.add(Dense(64, input_dim=10, activation='relu'))
    model.add(Dense(1))
    
4.2 超分辨率生成

通过超分辨率生成对抗网络(SRGAN)将低分辨率模拟结果放大为高分辨率。

  • 使用 pytorch 实现 SRGAN:
    import torch
    from torch import nnclass Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=9, stride=1, padding=4)self.relu = nn.ReLU()def forward(self, x):x = self.relu(self.conv1(x))return x
    

5. 可视化与结果分析

高效的可视化是模拟结果解读的重要环节。

  • 动态可视化:使用 Python 的 matplotlibholoviews 动态展示模拟结果。
  • 特征提取与聚类:通过主成分分析(PCA)或 K-Means 聚类识别关键天气模式。
    from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    transformed_data = pca.fit_transform(simulation_data)
    

总结与展望

通过上述操作,RAMS 的数据驱动建模技术在模型参数优化、数据同化、计算加速等环节实现了显著提升。未来的重点方向在于:

  • 提升数据驱动技术的可解释性,增强物理机理与统计模型的结合。
  • 构建开源工具链,降低 RAMS 与数据驱动技术集成的门槛。
  • 推动云端实时建模与预测系统的发展,实现更高效的区域气象服务。

相关文章:

基于 RAMS 的数据驱动建模与应用实践:从理论到具体操作

基于 RAMS 的数据驱动建模与应用实践:从理论到具体操作 RAMS(区域大气建模系统)因其模块化设计、高分辨率模拟能力和广泛的应用领域,成为区域大气建模的强大工具。而数据驱动建模技术的崛起,使得 RAMS 的能力得到进一…...

计算机图形学实验练习(实验1.2-4.1AND补充实验12)

实验1.2 OpenGL与着色器编程 1.理论知识 1.1 OpenGL的含义 OpenGL是一种应用程序编程接口(Application Programming Interface,API),它是一种可以对图形硬件设备特性进行访问的软件库。OpenGL最新的4.3版本包含了超过500个不同的命令,可以用于设置所需的对象、图像和操…...

javascript-es6 (一)

作用域(scope) 规定了变量能够被访问的“范围”,离开了这个“范围”变量便不能被访问 局部作用域 函数作用域: 在函数内部声明的变量只能在函数内部被访问,外部无法直接访问 function getSum(){ //函数内部是函数作用…...

uni-app 程序打包 Android apk、安卓夜神模拟器调试运行

1、打包思路 云端打包方案(每天免费次数限制5,最简单,可以先打包尝试一下你的程序打包后是否能用): HBuilderX 发行App-Android云打包 选择Android、使用云端证书、快速安心打包本地打包: HBuilderX …...

yolov11 解读简记

1 文章详细介绍了YOLOv11的架构设计,包括以下几个关键组件: C3k2块:这是YOLOv11引入的一种新型卷积块,替代了之前版本中的C2f块。C3k2块通过使用两个较小的卷积核代替一个大的卷积核,提高了计算效率,同时保…...

CommonAPI学习笔记-1

CommonAPI学习笔记-1 一. 整体结构 CommonAPI分为两层:核心层和绑定层,使用了Franca来描述服务接口的定义和部署,而Franca是一个用于定义和转换接口的框架(https://franca.github.io/franca/)。 ​ 核心层和通信中间…...

从入门到精通:RabbitMQ的深度探索与实战应用

目录 一、RabbitMQ 初相识 二、基础概念速览 (一)消息队列是什么 (二)RabbitMQ 核心组件 三、RabbitMQ 基本使用 (一)安装与环境搭建 (二)简单示例 (三)…...

深入理解若依RuoYi-Vue数据字典设计与实现

深入理解若依数据字典设计与实现 一、Vue2版本主要文件目录 组件目录src/components:数据字典组件、字典标签组件 工具目录src/utils:字典工具类 store目录src/store:字典数据 main.js:字典数据初始化 页面使用字典例子&#xf…...

Cursor 帮你写一个小程序

Cursor注册地址 首先下载客户端 点击链接下载 1 打开微信开发者工具创建一个小程序项目 选择TS-基础模版 官方 2 然后使用Cursor打开小程序创建的项目 3 在CHAT聊天框输入自己的需求 比如 小程序功能描述:吃什么助手 项目名称: 吃什么小程序 功能目标…...

进程控制的学习

目录 1.进程创建 1.1 fork函数 1.2 fork函数返回值 1.3 写时拷贝 1.4 fork 常规用法 1.5 fork 调用失败的原因 2. 进程终止 2.1 进程退出场景 2.2 进程常见退出方法 2.2.1 从main 返回 2.2.2 echo $? 查看进程退出码 2.2.2.1 我们如何得到退出码代表的含…...

一文讲解Java中的接口和抽象类

抽象类和接口有什么区别? 一个类只能继承一个抽象类;但一个类可以实现多个接口。所以我们在新建线程类的时候,一般推荐使用Runnable接口的方式,这样线程类还可以继承其他类,而不单单是Thread类;抽象类符合…...

Vue 3 30天精进之旅:Day 05 - 事件处理

引言 在前几天的学习中,我们探讨了Vue实例、计算属性和侦听器。这些概念为我们搭建了Vue应用的基础。今天,我们将专注于事件处理,这是交互式Web应用的核心部分。通过学习如何在Vue中处理事件,你将能够更好地与用户进行交互&#…...

STM32完全学习——RT-thread在STM32F407上移植

一、写在前面 关于源码的下载,以及在KEIL工程里面添加操作系统的源代码,这里就不再赘述了。需要注意的是RT-thread默认里面是会使用串口的,因此需要额外的进行串口的初始化,有些人可能会问,为什么不直接使用CubMAX直接…...

Shodan Dorks安装指南,通过Shodan搜索漏洞

Shodan Dorks是一种基于Shodan的工具,不知道Shodan是什么的不必阅读下面的内容。简单的说就是,利用预定义的查询(dorks),通过Shodan轻松搜索漏洞和机密信息。 推荐渗透测试人员自行测试。 安装方法: 1.确…...

poi在word中打开本地文件

poi版本 5.2.0 方法1:使用XWPFFieldRun(推荐) 比如打开当前相对路径的aaaaa.docx XWPFFieldRun run paragraph.createFieldRun();CTRPr ctrPr run.getCTR().addNewRPr();CTFonts font ctrPr.addNewRFonts();// 设置字体font.setAscii(&quo…...

Linux查看服务器的内外网地址

目录: 1、内网地址2、外网地址3、ping时显示地址与真实不一致 1、内网地址 ifconfig2、外网地址 curl ifconfig.me3、ping时显示地址与真实不一致 原因是dns缓存导致的,ping这种方法也是不准确的,有弊端不建议使用,只适用于测试…...

OAuth1和OAuth2授权协议

OAuth 1 授权协议 1. 概述 OAuth1 是 OAuth 标准的第一个正式版本,它通过 签名和令牌 的方式,实现用户授权第三方访问其资源的功能。在 OAuth1 中,安全性依赖于签名机制,无需传递用户密码。 2. 核心特性 使用 签名&#xff08…...

DeepSeek学术题目选择效果怎么样?

论文选题 一篇出色的论文背后,必定有一个“智慧的选题”在撑腰。选题足够好文章就能顺利登上高水平期刊;选题不行再精彩的写作也只能“当花瓶”。然而许多宝子们常常忽视这个环节,把大量时间花在写作上,选题时却像抓阄一样随便挑一…...

数据结构(一)顺序表和链表

目录 1. 时间复杂度和空间复杂度 2. 顺序表 3. 链表 1. 时间复杂度和空间复杂度 如何估算一个算法的效率高低一般就是使用到时间复杂度和空间复杂度; 时间复杂度是评价一个算法运行快慢的, 而空间复杂度是算法额外需要空间大小. 1.1 时间复杂度的计算: 准确来说时间复杂度是…...

单相可控整流电路——单相桥式全控整流电路

以下是关于单相桥式整流电路的介绍: 电路构成(带阻性负载的工作情况) - 二极管:是电路0的核心元件,通常采用四个同型号或根据需求选择不同型号的二极管,如1N4001、1N4007等,如图Vt1和Vt4是一对…...

DeepSeek-R1:性能对标 OpenAI,开源助力 AI 生态发展

DeepSeek-R1:性能对标 OpenAI,开源助力 AI 生态发展 在人工智能领域,大模型的竞争一直备受关注。最近,DeepSeek 团队发布了 DeepSeek-R1 模型,并开源了模型权重,这一举动无疑为 AI 领域带来了新的活力。今…...

【Maui】提示消息的扩展

文章目录 前言一、问题描述二、解决方案三、软件开发(源码)3.1 消息扩展库3.2 消息提示框使用3.3 错误消息提示使用3.4 问题选择框使用 四、项目展示 前言 .NET 多平台应用 UI (.NET MAUI) 是一个跨平台框架,用于使用 C# 和 XAML 创建本机移…...

001 mybatis入门

文章目录 mybatis是什么ORM是什么ORM框架和MyBatis的区别#{}和${}的区别编码流程UserDaoImpl.javaUserDao.javaUser.javadb.propertiesSqlMapConfig.xmlUserMapper.xmlMybatisTest.javapom.xmluser.sql 表现层 SpringMVC 业务层 Spring 持久层 Mybatis https://mybatis.org/myb…...

tomcat的accept-count、max-connections、max-threads三个参数的含义

tomcat的accept-count、max-connections、max-threads三个参数的含义 tomcat的accept-count、max-connections、max-threads三个参数的含义 max-connections:最大连接数 最大连接数是指,同一时刻,能够连接的最大请求数 需要注意的是&#x…...

8.2 从看图识字到智能解读:GPT-4 with Vision 开启多模态 AI 新纪元

从看图识字到智能解读:GPT-4 with Vision 开启多模态 AI 新纪元 引言:AI 的多模态跃迁 随着人工智能技术的快速发展,我们正迈入一个新的智能交互时代。传统的 AI 模型主要聚焦于文本处理,而多模态 AI 模型如 GPT-4 with Vision(GPT-4V) 则能够同时处理图像和文本。GPT-4…...

.strip()用法

.strip("") 是 Python 字符串方法 strip() 的一个用法,它会去除字符串两端指定字符集中的字符。 基本语法: string.strip([chars])string: 这是你要操作的字符串。chars: 可选参数,表示你想要去除的字符集(默认为空格…...

蓝桥杯例题三

无论前方困难如何重重,我们都要坚定信念,勇往直前。面对挑战和困境,不要退缩,不要放弃,要坚持走下去。当我们感到疲惫时,要告诉自己:“我可以,我一定行!”相信自己的实力…...

关于pygame窗口输入法状态异常切换现象的分析报告

一、问题描述 1.1 需求说明 我们准备使用Pygame开发一个键盘输入测试程序,需要确保输入时窗口始终处于英文输入模式,也就是禁止中文输入; 1.2 现象描述 控制台种显示,程序在初始化时,会有两次IMM状态切换操作&…...

【JavaEE进阶】应用分层

目录 🎋序言 🍃什么是应用分层 🎍为什么需要应用分层 🍀如何分层(三层架构) 🎄MVC和三层架构的区别和联系 🌳什么是高内聚低耦合 🎋序言 通过上⾯的练习,我们学习了SpringMVC简单功能的开…...

两数相加:链表操作的基础与扩展

两数相加:链表操作的基础与扩展 引言 链表(Linked List)是一种灵活且高效的数据结构,特别适用于动态增删操作。无论是初学者还是资深程序员,链表的基本操作都是算法学习中的重要一环。而 “两数相加” 问题则是链表操…...

ChatGPT从数据分析到内容写作建议相关的46个提示词分享!

在当今快节奏的学术环境中,研究人员面临着海量的信息和复杂的研究任务。幸运的是,随着人工智能技术的发展,像ChatGPT这样的先进工具为科研人员提供了强大的支持。今天就让我们一起探索如何利用ChatGPT提升研究效率进一步优化研究流程。 ChatG…...

解析“in the wild”——编程和生活中的俚语妙用

解析“in the wild”——编程和生活中的俚语妙用 看下面的技术文章中遇到 in the wild这个词,想要研究一下,遂产生此文。 Are there ever pointers to pointers to pointers? There is an old programming joke which says you can rate C programmers…...

rocketmq原理源码分析之控制器模式- dledger

简介 RocketMQ 4.5 版本之前,RocketMQ 的broker是 Master/Slave部署架构,一组 broker 有一个 Master ,有0到若干Slave,Slave复制Master消息存储,随时替代下线的Master。Master/Slave部署架构提供一定的高可用性&#x…...

Hello Moto

“Hello Moto” 是摩托罗拉(Motorola)的一句经典广告口号,用于推广其品牌和产品,特别是在手机领域。以下是它的含义和背景: 1. 品牌宣传的标志性语句 直白含义:简单地向摩托罗拉打招呼(“Hell…...

存储基础 -- SCSI命令格式与使用场景

SCSI命令格式与使用场景 1. SCSI命令描述符块(CDB) 1.1 CDB基本概念 SCSI命令通过**命令描述符块(CDB, Command Descriptor Block)**表示。 CDB长度:SCSI命令根据使用场景有不同长度的CDB,常见的有6字节…...

ceph基本概念,架构,部署(一)

一、分布式存储概述 1.存储分类 存储分为封闭系统的存储和开放系统的存储,而对于开放系统的存储又被分为内置存储和外挂存储。 外挂存储又被细分为直连式存储(DAS)和网络存储(FAS),而网络存储又被细分网络接入存储(NAS)和存储区域网络(SAN)等。 DAS(D…...

CNN-GRU卷积门控循环单元时间序列预测(Matlab完整源码和数据)

CNN-GRU卷积门控循环单元时间序列预测(Matlab完整源码和数据) 目录 CNN-GRU卷积门控循环单元时间序列预测(Matlab完整源码和数据)预测效果基本介绍CNN-GRU卷积门控循环单元时间序列预测一、引言1.1、研究背景与意义1.2、研究现状1…...

Ubuntu 顶部状态栏 配置,gnu扩展程序

顶部状态栏 默认没有配置、隐藏的地方 安装使用Hide Top Bar 或Just Perfection等进行配置 1 安装 sudo apt install gnome-shell-extension-manager2 打开 安装的“扩展管理器” 3. 对顶部状态栏进行配置 使用Hide Top Bar 智能隐藏,或者使用Just Perfection 直…...

React应用深度优化与调试实战指南

一、渲染性能优化进阶 1.1 精细化渲染控制 typescript 复制 // components/HeavyComponent.tsx import React, { memo, useMemo } from react;interface Item {id: string;complexData: {// 复杂嵌套结构}; }const HeavyComponent memo(({ items }: { items: Item[] }) &g…...

Spring中的事件和事件监听器是如何工作的?

目录 一、事件(Event) 二、事件发布器(Event Publisher) 三、事件监听器(Event Listener) 四、使用场景 五、总结 以下是关于Spring中的事件和事件监听器的介绍与使用说明,结合了使用场景&…...

Vue.js组件开发-实现多个文件附件压缩下载

在 Vue 项目中实现多个附件压缩下载,可以借助 jszip 库来创建压缩文件,以及 file-saver 库来保存生成的压缩文件。 步骤 1:安装依赖 首先,在 Vue 项目中安装 jszip 和 file-saver: npm install jszip file-saver步骤…...

基于dlib/face recognition人脸识别推拉流实现

目录 一.环境搭建 二.推拉流代码 三.人脸检测推拉流 一.环境搭建 1.下载RTSP服务器MediaMTX与FFmpeg FFmpeg是一款功能强大的开源多媒体处理工具,而MediaMTX则是一个轻量级的流媒体服务器。两者结合,可以实现将本地视频或者实时摄像头画面推送到RTSP流,从而实现视频…...

qt QNetworkRequest详解

1、概述 QNetworkRequest是Qt网络模块中的一个核心类,专门用于处理网络请求。它封装了网络请求的所有关键信息,包括请求的URL、HTTP头部信息等,使得开发者能够方便地在Qt应用程序中执行网络操作,如文件下载、网页内容获取等。QNe…...

uvm timeout的哪些事

如下图所示,设置timeout并未生效,原因多了一个空格,坑 进一步分析,默认是overidable的 是否加括号呢,如下所示,这两个造型都可以,中间有空格也行 那么,我加上单位可以吗,…...

JavaScript赋能智能网页设计

构建AI驱动的实时风格迁移系统 案例概述 本案例将实现一个基于深度学习的实时图像风格迁移系统,通过浏览器端神经网络推理实现以下高级特性: WebAssembly加速的ONNX模型推理 WebGL Shader实现的风格混合算法 WebRTC实时视频流处理 基于Web Workers的…...

全面了解 Web3 AIGC 和 AI Agent 的创新先锋 MelodAI

不管是在传统领域还是 Crypto,AI 都是公认的最有前景的赛道。随着数字内容需求的爆炸式增长和技术的快速迭代,Web3 AIGC(AI生成内容)和 AI Agent(人工智能代理)正成为两大关键赛道。 AIGC 通过 AI 技术生成…...

leetcode_链表 234.回文链表

234.回文链表 给你一个单链表的头节点head,请你判断该链表是否为回文链表。如果是, 返回 true ; 否则, 返回false。思路: 找到中间节点(快慢指针法)反转后半部分的链表比较前半部分和后半部分链表 # Definition for singly-linked list. # class List…...

cloc下载和使用

cloc(Count Lines of Code)是一个跨平台的命令行工具,用于计算代码行数。以下是下载和使用 cloc 的步骤: 下载 cloc 对于 Windows 用户: 访问 cloc 的 GitHub 仓库:https://github.com/AlDanial/cloc在 …...

在 Windows 系统上,将 Ubuntu 从 C 盘 迁移到 D 盘

在 Windows 系统上,如果你使用的是 WSL(Windows Subsystem for Linux)并安装了 Ubuntu,你可以将 Ubuntu 从 C 盘 迁移到 D 盘。迁移过程涉及导出当前的 Ubuntu 发行版,然后将其导入到 D 盘的目标目录。以下是详细的步骤…...

【Redis】Redis入门以及什么是分布式系统{Redis引入+分布式系统介绍}

文章目录 介绍redis的引入 分布式系统单机架构应用服务和数据库服务分离【负载均衡】引入更多的应用服务器节点 单机架构 分布式是什么 数据库分离和负载均衡 理解负载均衡 数据库读写分离 引入缓存 数据库分库分表 引入微服务 介绍 The open source, in-memory data store us…...