当前位置: 首页 > news >正文

门控循环单元(GRU)与时间序列预测应用

一、GRU简介

门控循环单元(Gated Recurrent Unit,简称GRU)是一种简化版的LSTM(长短期记忆网络),专门用于解决长序列中的梯度消失问题。与LSTM相比,GRU具有更简单的结构和较少的参数,但在许多任务上表现出类似的性能,因此被广泛应用于自然语言处理(NLP)、时间序列预测等领域。


二、GRU的核心概念

GRU通过两个门控机制来控制信息流动:

  1. 重置门(Reset Gate):决定前一时间步的隐藏状态 (h_{t-1}) 中有多少信息需要被遗忘。
  2. 更新门(Update Gate):决定当前时间步的隐藏状态有多少信息需要更新。

三、GRU的数学原理

给定输入 ( x_t ) 和前一隐藏状态 ( h_{t-1} ):

  1. 重置门计算:
    [
    r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)
    ]

  2. 更新门计算:
    [
    z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)
    ]

  3. 候选隐藏状态计算:
    [
    \tilde{h}t = \tanh(W_h x_t + U_h (r_t \odot h{t-1}) + b_h)
    ]

  4. 当前隐藏状态更新:
    [
    h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t
    ]


四、使用TensorFlow实现GRU进行时间序列预测

我们将使用GRU预测简单正弦波数据,展示其在时间序列建模中的优势。

1. 导入必要的库
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
2. 生成时间序列数据
def generate_time_series(batch_size, n_steps):freq = np.random.rand(batch_size, 1) * 10 + 10time = np.linspace(0, 1, n_steps)series = 0.5 * np.sin((time - 0.5) * freq) + 0.05 * np.random.randn(batch_size, n_steps)return series[..., np.newaxis].astype(np.float32)# 设置参数
batch_size = 1000
n_steps = 50# 生成训练和验证数据
X_train = generate_time_series(batch_size, n_steps + 1)
X_valid = generate_time_series(200, n_steps + 1)
3. 构建GRU模型
model = tf.keras.models.Sequential([tf.keras.layers.GRU(50, return_sequences=True, input_shape=[None, 1]),tf.keras.layers.GRU(50),tf.keras.layers.Dense(1)
])
4. 编译模型
model.compile(optimizer='adam', loss='mse')
5. 训练模型
history = model.fit(X_train[:, :-1], X_train[:, -1], epochs=20,validation_data=(X_valid[:, :-1], X_valid[:, -1]))
6. 预测与可视化结果
X_new = generate_time_series(1, n_steps + 1)
y_pred = model.predict(X_new[:, :-1])plt.plot(X_new[0, :, 0], label="Actual")
plt.plot(np.arange(n_steps), y_pred[0], label="Predicted", linestyle="--")
plt.legend()
plt.show()

五、GRU与LSTM的比较

相同点:
  • 都能解决长期依赖问题。
  • 通过门控机制控制信息流动。
不同点:
  • 参数数量: GRU比LSTM少一个门(没有输出门),因此参数更少,训练速度更快。
  • 计算复杂度: GRU更简单,适合计算资源有限的场景。
  • 性能表现: 在某些任务上,GRU与LSTM表现相当,但对于长序列,LSTM可能表现更稳定。

六、总结

本篇文章详细介绍了GRU的核心概念与工作原理,并通过TensorFlow实现了一个简单的时间序列预测任务。GRU作为LSTM的高效替代方案,在很多应用场景中表现优异。下一篇将探讨如何利用**注意力机制(Attention)**增强RNN模型的性能。

相关文章:

门控循环单元(GRU)与时间序列预测应用

一、GRU简介 门控循环单元(Gated Recurrent Unit,简称GRU)是一种简化版的LSTM(长短期记忆网络),专门用于解决长序列中的梯度消失问题。与LSTM相比,GRU具有更简单的结构和较少的参数&#xff0c…...

Spring Boot 3 集成 Spring Security(2)授权

文章目录 授权配置 SecurityFilterChain基于注解的授权控制自定义权限决策 在《Spring Boot 3 集成 Spring Security(1)》中,我们简单实现了 Spring Security 的认证功能,通过实现用户身份验证来确保系统的安全性。Spring Securit…...

互联网摸鱼日报(2024-11-22)

互联网摸鱼日报(2024-11-22) 36氪新闻 学习马斯克不丢人,脸书也开始改造自己了 旅游行业趋势变了,增长还能从哪里寻找? 大厂入局后,小型小游戏团队能否继续喝一口汤? 一拥而上的“跨界咖啡”,是“走心”…...

RNN并行化——《Were RNNs All We Needed?》论文解读

InfoPaperhttps://arxiv.org/abs/2410.01201GitHubhttps://github.com/lucidrains/minGRU-pytorch个人博客地址http://myhz0606.com/article/mini_rnn 最近在看并行RNN相关的paper,发现很多都利用了Parallel Scanning算法。本文将从Parallel Scanning算法开始&…...

机器学习周志华学习笔记-第6章<支持向量机>

机器学习周志华学习笔记-第6章<支持向量机> 卷王&#xff0c;请看目录 6支持向量机6.1 函数间隔与几何间隔6.1.1 函数间隔6.1.2 几何间隔 6.2 最大间隔与支持向量6.3 对偶问题6.4 核函数6.5 软间隔支持向量机6.6 支持向量机6.7核方法 6支持向量机 支持向量机是一种经典…...

IP反向追踪技术,了解一下?

DOSS&#xff08;拒绝服务&#xff09;攻击是现在比较常见的网络攻击手段。想象一下&#xff0c;有某个恶意分子想要搞垮某个网站&#xff0c;他就会使用DOSS攻击。这种攻击常常使用的方式是IP欺骗。他会伪装成正常的IP地址&#xff0c;让网络服务器以为有很多平常的请求&#…...

2025蓝桥杯(单片机)备赛--扩展外设之UART1的原理与应用(十二)

一、串口1的实现原理 a.查看STC15F2K60S2数据手册: 串口一在590页&#xff0c;此款单片机有两个串口。 串口1相关寄存器&#xff1a; SCON:串行控制寄存器&#xff08;可位寻址&#xff09; SCON寄存器说明&#xff1a; 需要PCON寄存器的SMOD0/PCON.6为0&#xff0c;使SM0和SM…...

Linux 使用gdb调试core文件

core文件和gdb调试 什么是 core 文件&#xff1f;产生core文件的原因&#xff1f;core 文件的控制和生成路径gdb 调试core 文件引用和拓展 什么是 core 文件&#xff1f; 当程序运行过程中出现Segmentation fault (core dumped)错误时&#xff0c;程序停止运行&#xff0c;并产…...

Python后端flask框架接收zip压缩包方法

一、用base64编码发送&#xff0c;以及接收 import base64 import io import zipfile from flask import request, jsonifydef unzip_and_find_png(zip_data):# 使用 BytesIO 在内存中处理 zip 数据with zipfile.ZipFile(io.BytesIO(zip_data), r) as zip_ref:extracted_paths…...

【21-30期】Java技术深度剖析:从分库分表到微服务的核心问题解析

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;Java &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 文章题目&#xff1a;Java技术深度剖析&#xff1a;从分库分表到微服务的核心问题解析 摘要&#xff1a; 本…...

Linux 中 find 命令使用详解

目录 一&#xff1a;基本语法二&#xff1a;搜索路径1、限制递归层级2、排除指定路径 三&#xff1a;匹配条件1、按照文件名搜索2、按文件类型搜索3、按文件大小搜索4、按文件权限搜索5、按文件所有者或所属组搜索6、按文件修改时间搜索 四&#xff1a;执行操作1、输出满足条件…...

云服务器部署WebSocket项目

WebSocket是一种在单个TCP连接上进行全双工通信的协议&#xff0c;其设计的目的是在Web浏览器和Web服务器之间进行实时通信&#xff08;实时Web&#xff09; WebSocket协议的优点包括&#xff1a; 1. 更高效的网络利用率&#xff1a;与HTTP相比&#xff0c;WebSocket的握手只…...

林业产品智能推荐引擎:Spring Boot篇

1 绪论 1.1 选题背景 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。计算机软件可以针对不同行业的营业特点以及管理需求&#xff0c;设置不同的功能&…...

【C++】LeetCode:LCR 077. 排序链表

题干 LCR 077. 排序链表 给定链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 解法&#xff1a;归并排序 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(null…...

git教程

文章目录 简介&#xff1a;使用教程&#xff1a;&#xff08;1&#xff09;安装git&#xff1a;&#xff08;2&#xff09;设置用户名和邮箱作为标识符&#xff1a;&#xff08;3&#xff09;建立本地仓库&#xff1a;本地仓库作用&#xff1a;&#xff08;1&#xff09;将文件…...

报表工具功能对比:免费易上手的山海鲸报表 vs 庞大用户群体的Tableau

在数据报表与分析领域&#xff0c;随着大数据技术的不断发展和企业数字化转型的深入&#xff0c;市面上涌现出了众多报表工具&#xff0c;为用户提供多元化的选择。对于企业数据分析师、IT人员及管理层来说&#xff0c;选择一款适合自己的报表工具至关重要。本文将从多个角度对…...

鸿蒙原生应用开发及部署:首选华为云,开启HarmonyOS NEXT App新纪元

目录 前言 HarmonyOS NEXT&#xff1a;下一代操作系统的愿景 1、核心特性和优势 2、如何推动应用生态的发展 3、对开发者和用户的影响 华为云服务在鸿蒙原生应用开发中的作用 1、华为云ECS C系列实例 &#xff08;1&#xff09;全维度性能升级 &#xff08;2&#xff…...

CSS之3D转换

三维坐标系 三维坐标系其实就是指立体空间&#xff0c;立体空间是由3个轴共同组成的。 x轴:水平向右注意:x右边是正值&#xff0c;左边是负值 y轴:垂直向下注意:y下面是正值&#xff0c;上面是负值 z轴:垂直屏幕注意:往外面是正值&#xff0c;往里面是负值 3D移动 translat…...

uni-app初学笔记:文件路径与作用

components:可复用的组件pages:页面&#xff08;可见/不可见&#xff09;static:静态资源&#xff0c;存放图片视频等 &#xff08;相当于vue项目的 assets&#xff09;mainjs:Vue初始化入口文件App.vue:应用配置&#xff0c;用来配置App全局样式以及监听pages.json :配置页面路…...

子组件中$emit和update更新传递变量

vue2.6之后才可以使用update更新&#xff0c;vue2.6以下版本使用input和v-model 需求描述&#xff1a;蒙层上展示弹窗&#xff0c;弹窗点击关闭&#xff0c;需要向父传递关闭的信息 方法1&#xff0c;简便直接传递变量visible&#xff08;或者不改名isModalVisible也是可以的…...

浅谈Python库之lxml

一、基本介绍 lxml 是一个用 Python 编写的库&#xff0c;它提供了对 XML 和 HTML 文档的解析和操作功能。它使用 C 语言编写的 libxml2 和 libxslt 库作为后端&#xff0c;因此解析速度非常快&#xff0c;并且能够处理大型文档。lxml 支持 XPath 和 XSLT&#xff0c;这使得它在…...

spring boot框架漏洞复现

spring - java开源框架有五种 Spring MVC、SpringBoot、SpringFramework、SpringSecurity、SpringCloud spring boot版本 版本1: 直接就在根下 / 版本2:根下的必须目录 /actuator/ 端口:9093 spring boot搭建 1:直接下载源码打包 2:运行编译好的jar包:actuator-testb…...

IDEA插件CamelCase,快速转变命名格式

在IDEA上大小写转换的快捷键是 CtrlshitU 其它的格式转换的快捷键是 shitaltu 安装方法&#xff1a; file-settings-plugins-在marketplace搜索“CamelCase”-点击安装。 安装成功设置后&#xff0c;重新打开idea 下载完成后 点击 Apply 和OK 此刻就可以选中命名 并使用快捷…...

Elasticsearch中的节点(比如共20个),其中的10个选了一个master,另外10个选了另一个master,怎么办?

大家好&#xff0c;我是锋哥。今天分享关于【Elasticsearch中的节点&#xff08;比如共20个&#xff09;&#xff0c;其中的10个选了一个master&#xff0c;另外10个选了另一个master&#xff0c;怎么办&#xff1f;】面试题。希望对大家有帮助&#xff1b; Elasticsearch中的节…...

Spring Boot 集成 Knife4j 的 Swagger 文档

在开发微服务应用时&#xff0c;API 文档的生成和维护是非常重要的一环。Swagger 是一个非常流行的 API 文档工具&#xff0c;可以帮助我们自动生成 RESTful API 的文档&#xff0c;并提供了一个友好的界面供开发者测试 API。本文将介绍如何在 Spring Boot 项目中集成 Knife4j …...

C# 创建快捷方式文件和硬链接文件

C# 创建快捷方式文件和硬链接文件 引言什么是快捷方式什么是硬链接文件硬链接与快捷方式不同 实现创建快捷方式文件实现创建硬链接文件小结 引言 什么是快捷方式 平常我们最常window桌面上点击的左下角带小箭头的文件就是快捷方式了&#xff0c;大家都很熟悉它。快捷方式是Wi…...

Linux高阶——1123—服务器基础服务器设备服务器基础能力

目录 1、服务器基础 1、服务器基本概述 2、服务器设计之初解决的问题 网络穿透 网络数据设备间的收发 3、服务器的类型C/S、B/S 2、服务器设备 将自己的服务器软件部署上线 3、代理服务器负载均衡&#xff0c;以及地址绑定方式 4、服务器的基础能力 1、服务器基础 1…...

LabVIEW串口通讯速度

LabVIEW串口通讯能达到的速度 LabVIEW支持高效的串口通讯&#xff0c;通过优化设置&#xff0c;理论上可以实现每次接收一个字节时达到1ms甚至更短的周期。不过&#xff0c;实际性能会受到以下因素的限制&#xff1a; ​ 波特率&#xff08;Baud Rate&#xff09;&#xff1a;…...

Jmeter中的监听器

3&#xff09;监听器 1--查看结果树 用途 调试测试计划&#xff1a;查看每个请求的详细信息&#xff0c;帮助调试和修正测试计划。分析响应数据&#xff1a;查看服务器返回的响应数据&#xff0c;验证请求是否成功。检查错误&#xff1a;识别和分析请求失败的原因。 配置步骤…...

缺失的第一个正数(java)

题目描述&#xff1a; 给你一个未排序的整数数组 nums &#xff0c;请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,0] 输出&#xff1a;3 解释&#xff1a;范围 […...

跨部门文件共享安全:平衡协作与风险的关键策略

在现代企业中&#xff0c;跨部门协作已成为推动业务发展的关键因素。然而&#xff0c;随着信息的自由流动和共享&#xff0c;文件安全风险也随之增加。如何在促进跨部门协作的同时&#xff0c;确保文件共享的安全性&#xff0c;成为了一个亟待解决的问题。 一、明确文件分类与…...

一键AI换脸软件,支持表情控制,唇形同步Facefusion-3.0.0发布!支持N卡和CPU,一键启动包

嗨,小伙伴们!还记得小编之前介绍的FaceFusion 2.6.1吗?今天给大家带来超级exciting的消息 —— FaceFusion 3.0.0闪亮登场啦! &#x1f31f; 3.0.0版本更新 &#x1f3d7;️ 全面重构:修复了不少小虫子,运行更稳定,再也不怕突然罢工啦! &#x1f600; Live Portrait功能:新增…...

我要成为算法高手-递归篇

目录 题目1&#xff1a;汉诺塔题目2&#xff1a;合并两个有序链表题目3&#xff1a;反转链表题目4&#xff1a;两两交换链表中的结点题目5&#xff1a;Pow(x,n) 题目1&#xff1a;汉诺塔 面试题 08.06. 汉诺塔问题 - 力扣&#xff08;LeetCode&#xff09; 解题思路&#xff1…...

Git 提交的相对引用

Git 提交的相对引用 在 Git 中&#xff0c;使用 ~ 和 ^ 符号可以帮助你更灵活地引用提交历史中的特定提交。以下是这些符号的具体用法和示例&#xff1a; 1. ~&#xff08;波浪号&#xff09; ~ 符号用于指向上一个或多个父提交。它总是沿着第一个父提交的链向上追溯。 HEA…...

国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评

近日&#xff0c;阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA&#xff08;Technical Specification for Artificial Intelligence Cloud Platform&#xff1a;General Architecture&#xff09;国际标准和《智算工程平台能力要求》国内标准一致性测评&…...

CDAF / PDAF 原理 | PDAF、CDAF 和 LAAF 对比 | 图像清晰度评价指标

注&#xff1a;本文为 “CDAF / PDAF 原理 | PDAF、CDAF 和 LAAF 对比 | 图像清晰度评价指标” 几篇相关文章合辑。 文章中部分超链接、图片异常受引用之前的原文所限。 相机自动对焦原理 TriumphRay 于 2020-01-16 18:59:41 发布 凸透镜成像原理 这一部分大家中学应该就学过…...

小米C++ 面试题及参考答案下(120道面试题覆盖各种类型八股文)

指针和引用的区别?怎么实现的? 指针和引用有以下一些主要区别。 从概念上来说,指针是一个变量,它存储的是另一个变量的地址。可以通过指针来间接访问所指向的变量。例如,我们定义一个整型指针int *p;,它可以指向一个整型变量的内存地址。而引用是一个别名,它必须在定义的…...

WPF异步UI交互功能的实现方法

前面的文章我们提及过&#xff0c;异步UI的基础实现。基本思路主要是开启新的UI线程&#xff0c;并通过VisualTarget将UI线程上的Visual(即RootVisual)连接到主线程上的UI上即可渲染显示。 但是&#xff0c;之前的实现访问是没有交互能力的&#xff0c;视觉树上的UI并不能实现…...

2024 java大厂面试复习总结(一)(持续更新)

10年java程序员&#xff0c;2024年正好35岁&#xff0c;2024年11月公司裁员&#xff0c;记录自己找工作时候复习的一些要点。 java基础 hashCode()与equals()的相关规定 如果两个对象相等&#xff0c;则hashcode一定也是相同的两个对象相等&#xff0c;对两个对象分别调用eq…...

TCP/IP学习笔记

TCP\IP从实际应用的五层结构开始&#xff0c;自顶而下的去分析每一层。 TCP/IP五层架构概述 学术上面是TCP/IP四层架构&#xff0c;OSI/ISO是七层架构&#xff0c;实际中使用的是TCP/IP五层架构。 数据链路层 ICMP数据包分析 Wireshark抓包分析ICMP协议_wireshark抓ping包分析…...

基于IPMI的服务器硬件监控指标解读

在现代化数据中心中&#xff0c;服务器的稳定运行对于保障业务连续性至关重要。为了实时掌握服务器的健康状况&#xff0c;运维团队需要借助高效的监控工具。监控易作为一款功能强大的监控软件&#xff0c;支持使用IPMI&#xff08;Intelligent Platform Management Interface&…...

相亲交友小程序项目介绍

一、项目背景 在当今快节奏的社会生活中&#xff0c;人们忙于工作和事业&#xff0c;社交圈子相对狭窄&#xff0c;寻找合适的恋爱对象变得愈发困难。相亲交友作为一种传统而有效的社交方式&#xff0c;在现代社会依然有着巨大的需求。我们的相亲交友项目旨在为广大单身人士提…...

Day3 洛谷Day3 1161+1179+1200+1304

零基础洛谷刷题记录 Day1 2024.11.18 Day2 2024.11.25 Day3 2024.11.26 文章目录 零基础洛谷刷题记录1161&#xff1a;题目描述1161&#xff1a;解题代码1161&#xff1a;学习成果1179&#xff1a;题目描述&#xff08;成功写出&#xff09;1179&#xff1a;解题代码1179&…...

【通俗理解】ELBO(证据下界)——机器学习中的“情感纽带”

【通俗理解】ELBO&#xff08;证据下界&#xff09;——机器学习中的“情感纽带” 关键词提炼 #ELBO #证据下界 #变分推断 #机器学习 #潜变量模型 #KL散度 #期望 #对数似然 第一节&#xff1a;ELBO的类比与核心概念【尽可能通俗】 ELBO&#xff0c;即证据下界&#xff0c;在…...

Vue: computed 计算属性

在Vue中&#xff0c;computed属性是用于计算和返回基于其他响应式数据的值的功能。 适合在模板中使用&#xff0c;因为能够根据依赖的数据自动更新。 当依赖的数据变化时&#xff0c;computed属性会重新计算&#xff0c;并且会将结果缓存&#xff0c;以提高性能。 computed的…...

【自动化Selenium】Python 网页自动化测试脚本(上)

目录 1、Selenium介绍 2、Selenium环境安装 3、创建浏览器、设置、打开 4、打开网页、关闭网页、浏览器 5、浏览器最大化、最小化 6、浏览器的打开位置、尺寸 7、浏览器截图、网页刷新 8、元素定位 9、元素交互操作 10、元素定位 &#xff08;1&#xff09;ID定位 &…...

数据库命令规范、数据库基本设计规范

所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字&#xff08;如果表名中包含关键字查询时&#xff0c;需要将其用单引号括起来&#xff09; 数据库对象的命名要能做到见名识意&#xff0c;并且最后不要超过32个字符 临时库表必…...

php常用伪协议整理

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文整理php常见的伪协议 php伪协议介绍 直观点&#xff0c;就是php可以识别的协议。 类似于我们访问网站的http协议&#xff0c;我们用浏览器访问我们自己本地文件的file协议等。 php可以识别这些协议&#xf…...

Redis与MySQL如何保证数据一致性

Redis与MySQL如何保证数据一致性 简单来说 该场景主要发生在读写并发进行时&#xff0c;才会发生数据不一致。 主要流程就是要么先操作缓存&#xff0c;要么先操作Redis&#xff0c;操作也分修改和删除。 一般修改要执行一系列业务代码&#xff0c;所以一般直接删除成本较低…...

NIO三大组件

现在互联网环境下&#xff0c;分布式系统大相径庭&#xff0c;而分布式系统的根基在于网络编程&#xff0c;而netty恰恰是java领域的网络编程的王者&#xff0c;如果要致力于并发高性能的服务器程序、高性能的客户端程序&#xff0c;必须掌握netty网络编程。 NIO基础 NIO是从ja…...