当前位置: 首页 > news >正文

大数据技术笔记

大数据技术概述

本章初步介绍大数据领域技术涉及的一些基础理论,如分布式、存储、网络等知识。

分布式理论

大数据意味数据量大,那么存储和计算数据的节点就不大可能只有一个,而是采用分而治之的思想在多个节点中存储和计算,提高处理大量数据的能力,所以大数据的组件和系统一般是分布式集群,由多个节点构成+内部的系统很容易就达到上千台节点的规模。而分布式系统有三个特性,分别是可用性、数据一致性和分区容忍性。由于三者相互联系和牵制,比如数据在多节点之间同步需要一定时间,如果在这段时间内系统依然可用,那么就使得数据允许不一致;如果希望系统时刻保持数据一致,那么系统在同步这段时间内就需要暂停对外使用也就是放弃可用性,所以分布式系统这三个特性只能取其二,这就是业界著名的CAP理论。在大多数场景下,CAP理论会退化成BASE理论,即基本可用、软状态和最终一致性。基本可用是服务在功能上的降级,保持服务的对外可用,但是一部分功能不可用。软状态是指数据从一个状态到一个目标状态的时候允许存在一个“中间状态”。最终一致性是说数据同步后即使一开始在系统中不一致,但是随着时间的推移,最终会达到一个一致的状态。

存储和网络

这两者是常见的计算机资源,大数据意味着数据量大,自然所需要的磁盘存储和网络带宽也大。在分布式系统中,数据会分散到各个集群节点中存储。为保证数据的可靠性,也就是避免某块硬盘坏了数据就丢失了的情况,数据往往会有多个副本并分散到不同节点中存储。数据也不是完整地存在一个位置,而是会分成多个block存储在不同数据节点。网络是另外一个分布式系统重要且不可或缺的资源,因为节点之间的通信都需要经过网络。网络不可避免地成为数据运输的桥梁,网络的可靠性直接影响了分布式系统的可用性。网络的重要性在CAP理论分区容忍性中也得到体现。

计算

数据存储到磁盘后,在产生价值之前是需要经过计算和分析的。源数据往往不会直接产生价值,而是在进行一定的数据分析和计算后才会有一定的价值体现。数据杂乱无章地落到磁盘,那么如何准确地取出来呢?当然需要有一个组件是能够存储数据的明确位置的,这样当有数据读取的请求进来,会先到元数据组件中查询完整数据在节点中的存储位置,然后客户端再去对应的节点服务器中读取,实际上这就是HDFS的做法。 我觉得在深入理解大数据各个组件之前需要对大数据系统的一些概念有初步的了解,比如大数据是如何处理海量数据的计算和从中创造价值,关键就是分布式地数据计算,通过数据建模、数据分析等方法对数据进行演算,最终产生数据背后的价值信息。所以,数据大多数情况下首先需要结构化存储,也就是像关系型数据库那样由包含多个字段的表存储,然后提供一些算子函数例如map,reduce进行计算,这样数据分析人员为得到期望的数据就可以写由map、reduce等算子构成的程序去计算。但是这样其实是比较麻烦的,因为毕竟要写程序,对于没有编程基础太弱的数据分析师要求比较高,所以像Hive、Spark就提供了结构化数据分析语言也就是SQL进行查询,数据分析师只要写SQL就可以进行取数的操作。

调度系统、综合应用

大数据系统并不是只有存储和计算的模块,真正提供用户价值的是丰富多样的数据应用。主要的数据应用有数据仓库、数据可视化系统等。数据仓库是基于某种主题聚合了历史数据,并对数据做过滤、聚合和计算,形成的分层的数据组件。数据平台上运行着各类数据任务,任务之间的依赖和执行一般依靠调度系统。调度系统支持用户将一系列任务建立成具有依赖关系的DAG图,任务按照一定的顺序在固定的时间运行。

Google三大论文

Google三大论文-GFS

整个GFS是被设计成由一个master和多个chunkserver组成的分布式文件系统。Master是一个目录服务,用于接受来自客户端的请求查询目标文件。Chunkserver是实际存储数据的节点。Master会通过查找元数据找到目标文件的位置,包括目标chunkserver和具体block(文件块)的位置。为了防止文件数据丢失以及提高并发读的效率,chunkserver上每个文件块数据都默认保留三个副本,不会因为一个chunkserver挂掉而数据丢失。客户端拿到了chunk所在的chunkserver信息后,客户端就可以直接去找其中的chunkserver去获取自己所要的数据了。由于master是单节点,在master因为硬件原因挂掉之后数据会有丢失的风向。为了提高master的高可用性,GFS就设计了备用的几个master,数据写入master的时候进行同步复制,也就是数据也同步写入几个备用的master中。另外,为了提高master的并发能力,GFS还设计多个可读的影子master,数据写入master后也异步地写到影子master,然后影子master就能分担客户端的读请求。从以上机制看,这个master有三种角色,分别是目录服务、同步复制的主节点和异步复制的主节点。

在解决分布式写入的网络瓶颈问题上,GFS采用了流水线式的网络传输。客户端将写请求发给同个机架上一个副本服务器A(可能是主副本也可能是次副本),然后再由A传输数据给离它最近的另一个副本(而不是都由客户端进行发送因为那样客户端的网络出口会成为瓶颈)。

具体的数据写入流程是这样的。客户端向Master发起一个写数据的请求,包含数据的整个大小。Master在收到请求之后,根据数据的大小以及当前各个chunserver的存储情况,将数据切分成块,然后决定将各个块及其副本存到哪一些chunserver,最终给客户端返回这些chunserver的信息。客户端接着就直接向这些chunserver发起写数据请求了,然后chunserver通过流水线的方式复制副本。

相应的数据读取流程也是客户端先跟Master交互,也就是向Master发起数据查询,传入文件路径的参数。Master查询到该数据在哪些cunserver上之后就将这些信息返回给客户端。客户端在接收到这些信息之后就直接向chunserver发起读取数据的请求了。

由于GFS的元数据管理,它在处理大文件读写场景时会很有优势,但是在处理大量小文件的时候就存在劣势,因为文件数多,而每一个文件都需要存储元数据,所以整体会占用比较大的空间,而且查询性能也会有所下降。

Google三大论文-MapReduce

MapReduce是设计为计算HDFS上数据的一个框架,它分成Map和Reduce两个阶段。Map是对输入数据做一个映射操作,将数据转化成key-value的形式,而Reduce是规约动作,对map阶段生成的数据做聚合的计算,将相同key的数据合并,最终再输出结果数据。这样的计算框架用于实现分布式grep、URL统计、word count等操作,开发过程只需要实现map和Reduce。

执行MapReduce的架构包含Master和Worker两种角色,Master负责任务的解析和分发,Worker则负责任务的执行。在Worker节点宕机的情况下,也就是有Worker节点失效,Master会将原失效节点上的任务无论是已失败的还是未执行的都转移到其他Worker继续执行。而对于Master出错的情况,则是根据备份的checkpoint启动一个新的master。

每个MapReduce过程Map阶段和Reduce阶段都需要从磁盘拉取数据和将数据落到磁盘中,所以MapReduce的性能比较差。

​​​​​​​Google三大论文-BigTable

BigTable旨在打造一款高性能、弹性伸缩、方便运维的分布式数据库。以往的关系型数据例如MySql集群也可以扩展和缩小规模,以此来应对业务的扩张和收缩。但是在MySql集群上加节点和下节点都需要人工去操作,而且涉及到数据的频繁迁移。例如原来通过对业务数据取模的方式来选择MySql节点,在增加两台之后,取模的方式有所变化,这时候原来存储的数据都需要重新进行取模计算然后迁移到新的节点上,而且MySql不存在一个服务能够做这些事。BigTable的设计思想就是使的集群的伸缩自发地适应,比如加了几个节点后Master会根据各个Tablet的情况来切分数据、移动数据。假如是下掉一两个节点,Master也会根据当前Tablet server的负载情况迁移数据过来。整个过程运维人员只需要进行从集群加入或删减节点的操作。

那么BigTable是怎么进行数据切分与合并的呢?每一个TabletServer管理了多个Tablet,各存储一部分范围内的数据。单个Tablet中数据是有序的,每一行数据都带有一个行键,作为排序的依据。每个Tablet有最大存储容量,超过最大存储容量就会被切分;如果有大量数据被删除,一些小的Tablet也会被Master合并。TabletServer可以扩容,Master即可向它分配Tablet。

BigTable还有另外一个组成组件Chubby,在它的实现Hbase中对应的是Zookeeper,是一个元数据存储模块,也是负责主节点选取、主从切换的重要角色。客户端从元数据管理组件Chubby中查询到各个TabletServer的信息,然后直接向它们发起请求进行读写了,也就是读写过程不需要经过Master。Chubby的另外一个功能是确保集群中只有一个Master。Chubby支持客户端Master去注册一个临时节点,这个临时节点和客户端的生命周期相同,可以用来监控Master的状态;另外一个Backup Master去监听这个节点,一旦丢失,它就会替补上,去注册使自己成为Master,所有的TabletServer都从这个目录的这个临时节点得知当前Master是哪台。

BigTable如何实现改善高并发场景下的读写性能?根据论文的解读,主要有三点。第一,数据先写缓存,之后在一定条件下再溢写磁盘;缓存memtable使用跳表的数据结构,提高数据查询和插入效率。第二,在内存中设置BloomFilter,过滤掉不存在于SSTable中的行键,并利用局部性原理,使得大部分查询结果可以在缓存中找到,而无需访问磁盘。最后,定期后台合并SSTable,以减少读请求需要访问的SSTable数量。

相关文章:

大数据技术笔记

大数据技术概述 本章初步介绍大数据领域技术涉及的一些基础理论,如分布式、存储、网络等知识。 分布式理论 大数据意味数据量大,那么存储和计算数据的节点就不大可能只有一个,而是采用分而治之的思想在多个节点中存储和计算,提…...

【JAVA 基础 第(20)课】JDBC JAVA 连接 MySql 数据库

pom.xml 导入 MySql jar 包 <!-- 导入Mysql数据库链接jar包 --> <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.30</version> </dependency> 数据库驱动、连接封装成…...

如何将使用unsloth微调的模型部署到ollama?

目录 一、将模型保存为gguf格式 二、下载llama.cpp 三、生成 llama-quantize 可执行文件 四、使用llama-quantize 五、训练模型 六、将模型部署到ollama 一、将模型保存为gguf格式 在你的训练代码 trainer.train() 之后添加&#xff1a; model.save_pretrained_gguf(&q…...

Go语言中的值类型和引用类型特点

一、值类型 值类型的数据直接包含值&#xff0c;当它们被赋值给一个新的变量或者作为参数传递给函数时&#xff0c;实际上是创建了原值的一个副本。这意味着对新变量的修改不会影响原始变量的值。 Go中的值类型包括&#xff1a; 基础类型&#xff1a;int&#xff0c;float64…...

grafana新增email告警

选择一个面板 比如cpu 新增一个临界点表达式 input选A 就是A的值达到某个临界点 触发告警 我这边IS ABOVE0.15就是cpu大于0.15%就触发报警&#xff0c;这个值怎么填看指标的值显示 这里要设置一下报警条件 这边随便配置下 配置标签和通知&#xff0c;选择你的邮件 看下告警…...

基于Spring Security 6的OAuth2 系列之六 - 授权服务器--自定义授权页面

之所以想写这一系列&#xff0c;是因为之前工作过程中使用Spring Security OAuth2搭建了网关和授权服务器&#xff0c;但当时基于spring-boot 2.3.x&#xff0c;其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0&#xff0c;结果一看Spring Security也升级…...

MyBatis-Plus的插件

一、分页插件 1.自带的 启动类 在启动类里配置分页相关内容 package com.qcby;import com.baomidou.mybatisplus.annotation.DbType; import com.baomidou.mybatisplus.extension.plugins.MybatisPlusInterceptor; import com.baomidou.mybatisplus.extension.plugins.inne…...

基于Redis实现短信验证码登录

目录 1 基于Session实现短信验证码登录 2 配置登录拦截器 3 配置完拦截器还需将自定义拦截器添加到SpringMVC的拦截器列表中 才能生效 4 Session集群共享问题 5 基于Redis实现短信验证码登录 6 Hash 结构与 String 结构类型的比较 7 Redis替代Session需要考虑的问题 8 …...

HarmonyOS Next构建工具 lycium 原理介绍

HarmonyOS Next构建工具 lycium 原理介绍 背景介绍 HarmonyOS Next中很多系统API是以C接口提供&#xff0c;如果要使用C接口&#xff0c;必须要使用NAPI在ArkTS与C间交互&#xff0c;这种场景在使用DevEco-Studio中集成的交叉编译工具&#xff0c;以及cmake构建工具就完全够用…...

蓝桥杯例题一

不管遇到多大的困难&#xff0c;我们都要坚持下去。每一次挫折都是我们成长的机会&#xff0c;每一次失败都是我们前进的动力。路漫漫其修远兮&#xff0c;吾将上下而求索。只有不断努力奋斗&#xff0c;才能追逐到自己的梦想。不要害怕失败&#xff0c;害怕的是不敢去尝试。只…...

MySQL可直接使用的查询表的列信息

文章目录 背景实现方案模板SQL如何查询列如何转大写如何获取字符位置如何拼接字段 SQL适用场景 背景 最近产品找来&#xff0c;想让帮忙出下表的信息&#xff0c;字段驼峰展示&#xff0c;每张表信息show create table全部展示&#xff0c;再逐个粘贴&#xff0c;有点太耗费时…...

输入网址到网页显示,发生了什么--讲述

输入www.baidu.com作为网址&#xff0c; 孤身的人-HTTP 浏览器要做的第一步就是 解析URL&#xff0c;根据url里面的资源路径&#xff0c;确认服务器资源和路径&#xff0c;生成http请求消息&#xff0c;包括请求消息&#xff08;请求行 消息头 请求体&#xff09; 举例&am…...

npm install 报错:Command failed: git checkout 2.2.0-c

[TOC](npm install 报错&#xff1a;Command failed: git checkout 2.2.0-c) npm install 报错&#xff1a;Command failed: git checkout 2.2.0-c export NODE_HOME/usr/local/node-v14.14.0-linux-x64 npm config set registry https://registry.npmmirror.com 使用如上环…...

[Day 15]54.螺旋矩阵(简单易懂 有画图)

今天我们来看这道螺旋矩阵&#xff0c;和昨天发的题很类似。没有技巧&#xff0c;全是循环。小白也能懂~ 力扣54.螺旋矩阵 题目描述&#xff1a; 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 示例 1&#xff1a; …...

react antd点击table单元格文字下载指定的excel路径

在使用 Ant Design (antd) 的 Table 组件时&#xff0c;如果想点击表格单元格中的文字来触发下载指定路径的 Excel 文件&#xff0c;可以通过以下步骤实现&#xff1a; 1. 确保有一个可供下载的 Excel 文件&#xff1a;需要有一个服务器端点或者一个可以直接访问的 URL&#xf…...

什么是数据结构

数据结构 如何有效的存储数据。 数据存储方式 物理结构又称存储结构 在内存中存储状态&#xff0c;数据可以选择集中存放&#xff08;顺序存储结构&#xff09;&#xff0c;也可以选择分散存放&#xff08;链式存储结构&#xff09;。 逻辑结构 数据之间的逻辑关系&#…...

把 PVE 下的机械硬盘(非SSD系统盘)分配给虚拟机使用

PVE 挂在硬盘 参考 Ubuntu 24.04 LTS 空闲硬盘挂载到 文件管理器的 other locations。 在 PVE shell 中根据上面教程挂在硬盘 新建分享目录 参考 Proxmox VE&#xff08;PVE&#xff09;添加硬盘做存储 虚拟机新增硬盘 虚拟机 关机&#xff0c;按下图新增硬盘 新增硬盘…...

HTML5 Web Worker 的使用与实践

引言 在现代 Web 开发中&#xff0c;用户体验是至关重要的。如果页面在执行复杂计算或处理大量数据时变得卡顿或无响应&#xff0c;用户很可能会流失。HTML5 引入了 Web Worker&#xff0c;它允许我们在后台运行 JavaScript 代码&#xff0c;从而避免阻塞主线程&#xff0c;保…...

把网站程序数据上传到服务器的方法和注意事项

将网站程序数据上传到服务器是一个常见的网站开发和部署流程。主要涉及到FTP上传、FileZilla、rsync(在Linux下)、或其他相关的文件同步工具。以下是一般步骤和方法&#xff1a; 使用FTP&#xff1a; 1. 选择FTP客户端软件&#xff1a; - 常见的FTP客户端包括FileZilla(开源)、…...

YOLOv5训练自己的数据及rknn部署

YOLOv5训练自己的数据及rknn部署 一、下载源码二、准备自己的数据集2.1 标注图像2.2 数据集结构 三、配置YOLOv5训练3.1 修改配置文件3.2 模型选择 四、训练五、测试六、部署6.1 pt转onnx6.2 onnx转rknn 七、常见错误7.1 训练过程中的错误7.1.1 cuda: out of memory7.1.2 train…...

李沐vscode配置+github管理+FFmpeg视频搬运+百度API添加翻译字幕

终端输入nvidia-smi查看cuda版本 我的是12.5&#xff0c;在网上没有找到12.5的torch&#xff0c;就安装12.1的。torch&#xff0c;torchvision&#xff0c;torchaudio版本以及python版本要对应 参考&#xff1a;https://blog.csdn.net/FengHanI/article/details/135116114 创…...

Python 在Word中添加、或删除超链接

在Word文档中&#xff0c;超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超链接&#xff0c;用户可以轻松地导航到相关信息&#xff0c;从而增强文档的互动性和可读性。本文将介绍如何使用Python在Word中添加超链接、或删除Word文档中的超…...

在K8S中使用Values文件定制不同环境下的应用配置详解

在Kubernetes&#xff08;简称K8s&#xff09;环境中&#xff0c;应用程序的配置管理是一项关键任务。为了确保应用程序在不同环境&#xff08;如开发、测试、预发布和生产&#xff09;中都能稳定运行&#xff0c;我们需要为每个环境定制相应的配置。Values文件是在使用Helm管理…...

elementUI Table组件实现表头吸顶效果

需求描述 当 table 内容过多的时候&#xff0c;页面上滑滚动&#xff0c;表头的信息也会随着被遮挡&#xff0c;无法将表头信息和表格内容对应起来&#xff0c;需要进行表头吸顶 开始编码&#x1f4aa; 环境&#xff1a;vue2.6、element UI step1&#xff1a; 给el-table__h…...

JS-Web API -day06

一、正则表达式 正则表达式测试工具: http://tool.oschina.net/regex 1.1 正则表达式介绍与语法 正则表达式&#xff1a; 正则表达式&#xff08;Regular Expression&#xff09;是用于匹配字符串中字符组合的模式。在 JavaScript中&#xff0c;正则表达式也是对象。通常用来查…...

qml MenuItem详解

1、概述 MenuItem 是 QML&#xff08;Qt Modeling Language&#xff09;中用于表示菜单项的组件。它通常作为 Menu 组件的子项出现&#xff0c;用于提供用户可点击的菜单选项。MenuItem 可以包含文本、图标&#xff0c;甚至可以是其他 MenuItem 或 Menu 的容器&#xff0c;从而…...

汇编实验·系统调用

一、实验目的: 1.掌握基于特定操作系统中调用API或者SYSTEMCALL的基本方法。 2.进一步理解高级语言中函数调用的相关规定和约定(stdcall,cdec,fastcall等) 3.IA-32架构下API参数在汇编中的实现方式和约定。 二、实验内容 1.在课程设定的VS2022社区版的汇编开发环境下,完…...

ubuntu调用图形化网络测试工具

在 Ubuntu 中&#xff0c;除了命令行工具外&#xff0c;还有一些图形化的网络测试工具可以帮助你更直观地测试和分析网络性能。以下是几款常用的图形化网络测试工具及其使用方法&#xff1a; 1. gnome-nettool gnome-nettool 是一个简单的图形化网络工具集&#xff0c;包含 pi…...

【Qt】05-菜单栏

做菜单 前言一、创建文件二、菜单栏 QMenuBar2.1 示例代码2.2 运行结果 三、工具栏 QToolBar3.1 运行代码3.2 结果分析 四、状态栏 QStatusBar4.1 运行代码4.2 运行结果 五、文本编辑框 QTextEdit5.1 运行代码5.2 运行结果 六、浮动窗口 addDockWidget6.1 运行代码6.2 运行结果…...

Git知识分享

一、理解git首先要理清楚下面五个概念&#xff1a; 1、工作区(git add 命令之前的样子) 2、stash 暂存(暂存工作区和暂存区的更改) 3、暂存区(git add 命令之后的存储区, 4、本地仓库(git commit提交的位置) 5、远程仓库(git push提交的位置) 二、git常用命令&#xff1a; 1、g…...

细说STM32F407单片机电源低功耗StandbyMode待机模式及应用示例

目录 一、待机模式基础知识 1、进入待机模式 2、待机模式的状态 3、退出待机模式 二、待机模式应用示例 1、示例功能和CubeMX项目设置 &#xff08;1&#xff09; 时钟 &#xff08;2&#xff09; DEBUG、LED1、KeyRight、USART6、CodeGenerator &#xff08;3&#x…...

独立站运营新突破:Clock斗篷技术助力商家降本增效

一、引言 在当今竞争激烈的电商市场中&#xff0c;独立站运营已成为众多商家拓展业务、打造品牌的重要途径。然而&#xff0c;推广成本高企一直是困扰独立站商家的难题。许多商家在推广过程中&#xff0c;由于缺乏有效的策略&#xff0c;往往面临高昂的费用和有限的回报。但事实…...

【python】subprocess.Popen执行adb shell指令进入linux系统后连续使用指令,出现cmd窗口阻塞问题

问题描述 subprocess.Popen执行adb shell指令进入linux系统后出现cmd窗口阻塞问题&#xff0c;需要手动关闭cmd才会继续执行其他指令。 解决方案 1、cmd指令后面加入exit\n关闭exe进程 2、subprocess.Popen()添加内置参数creationflagssubprocess.CREATE_NO_WINDOW隐藏窗口弹…...

10天学会flutter DAY2 玩转dart 类

print(point.y); * 使用 ?. 代替. 可以避免因为左边表达式为null 而导致的问题 (这个是flutter 2.0 之后新增的空认证功能)print(point?.x); print(point?.y); * 如下代码所示p1.y 6; **setter** 写入方法, print(p1.y); **getter** 读取方法p1.y 6; print(p1.y); […...

【C++】string类模拟实现

目录 &#x1f495;1.模拟string类构造函数 &#x1f495;2.模拟构造函数实现 &#x1f495;3.拷贝构造函数模拟实现 &#x1f495;4.析构函数模拟实现 &#x1f495;5.size函数&#xff0c;capacity函数模拟实现 &#x1f495;6.begin函数,end函数&#xff0c;模拟实…...

2025发文新方向:AI+量化 人工智能与金融完美融合!

2025深度学习发论文&模型涨点之——AI量化 人工智能的融入&#xff0c;使量化交易实现了质的突破。借助机器学习、深度学习等先进技术&#xff0c;人工智能可高效处理并剖析海量市场数据&#xff0c;挖掘出数据背后错综复杂的模式与趋势&#xff0c;从而不仅提升了数据分析…...

eniops库中reduce函数使用方法

reduce 是 eniops 中的一个常用函数&#xff0c;用于对张量进行降维操作。它允许你通过指定维度名称和操作类型&#xff08;如求和、均值等&#xff09;来简化张量的形状。 import eniops import torch# 创建一个示例张量 x torch.randn(2, 3, 4)# 使用 reduce 进行降维操作 …...

第03章 02 VTK中的智能指针

在VTK&#xff08;Visualization Toolkit&#xff09;中&#xff0c;智能指针用于管理对象的生命周期&#xff0c;避免内存泄漏和悬空指针等问题。VTK提供了几种不同类型的智能指针&#xff0c;包括vtkNew、vtkSmartPointer和vtkWeakPtr。以下是它们的区别和作用&#xff1a; …...

03垃圾回收篇(D4_彻底理解GC)

目录 一、浅析大促备战过程中出现的 fullGc&#xff0c;我们能做什么&#xff1f; 1. 什么是 JVM 的 GC? 2. 写代码的时候能做什么&#xff1f; 3. 测试能做啥 4. 知识小结 二、MinorGC、MajorGC、FullGC垃圾回收介绍 1. MinorGC &#xff08;新生代垃圾回收&#xff09…...

C语言小项目——通讯录

功能介绍&#xff1a; 1.联系人信息&#xff1a;姓名年龄性别地址电话 2.通讯录中可以存放100个人的信息 3.功能&#xff1a; 1>增加联系人 2>删除指定联系人 3>查找指定联系人的信息 4>修改指定联系人的信息 5显示所有联系人的信息 6>排序&#xff08;名字&…...

MyBatis和JPA区别详解

文章目录 MyBatis和JPA区别详解一、引言二、设计理念与使用方式1、MyBatis&#xff1a;半自动化的ORM框架1.1、代码示例 2、JPA&#xff1a;全自动的ORM框架2.1、代码示例 三、性能优化与适用场景1、MyBatis&#xff1a;灵活的SQL控制1.1、适用场景 2、JPA&#xff1a;开发效率…...

【理论】测试开发工程师进阶路线

一、腾讯与阿里的质量保证服务参考 阿里云效测试能力与架构 腾讯 WeTest 测试能力全景图 二、测试开发技术体系 1.用户端测试&#xff1a; Web/App 测试 Web/App 自动化测试 用户端专项测试 用户端安全测试 2.服务端测试&#xff1a; 接口协议与 Mock 接口自动化测试 服务端…...

能源新动向:智慧能源平台助力推动新型电力负荷管理系统建设

背景 国家能源局近日发布《关于支持电力领域新型经营主体创新发展的指导意见》&#xff0c;鼓励支持具备条件的工业企业、工业园区等开展智能微电网建设&#xff0c;通过聚合分布式光伏、分散式风电、新型储能、可调节负荷等资源&#xff0c;为电力系统提供灵活调节能力&#x…...

WPF基础 | 深入 WPF 事件机制:路由事件与自定义事件处理

WPF基础 | 深入 WPF 事件机制&#xff1a;路由事件与自定义事件处理 一、前言二、WPF 事件基础概念2.1 事件的定义与本质2.2 常见的 WPF 事件类型 三、路由事件3.1 路由事件的概念与原理3.2 路由事件的三个阶段3.3 路由事件的标识与注册3.4 常见的路由事件示例 四、自定义事件处…...

CAP原则中的P:分区容错性(Partition tolerance)

CAP 理论概述 在分布式系统中&#xff0c;系统面临三大核心问题&#xff1a; 一致性&#xff08;Consistency&#xff09;&#xff1a;所有节点的数据始终保持一致。可用性&#xff08;Availability&#xff09;&#xff1a;系统始终能够响应请求&#xff0c;无论请求是否成功…...

校验收货地址是否超出配送范围实战3(day09)

优化用户下单功能&#xff0c;加入校验逻辑&#xff0c;如果用户的收货地址距离商家门店超出配送范围&#xff08;配送范围为5公里内&#xff09;&#xff0c;则下单失败。 提示&#xff1a; ​ 1. 基于百度地图开放平台实现&#xff08;https://lbsyun.baidu.com/&#xff09…...

【二叉树的深搜】二叉树剪枝

文章目录 814. 二叉树剪枝解题思路&#xff1a;深度优先遍历 后序遍历另一种写法 814. 二叉树剪枝 814. 二叉树剪枝 ​ 给你二叉树的根结点 root &#xff0c;此外树的每个结点的值要么是 0 &#xff0c;要么是 1 。 ​ 返回移除了所有不包含 1 的子树的原二叉树。 ​ 节点…...

Java 大视界 -- Java 大数据中的数据脱敏技术与合规实践(60)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

k8s优雅重启

理论上处于terminating状态的pod&#xff0c;k8s 就会把它从service中移除了&#xff0c;只用配置一个优雅停机时长就行了。kubectl get endpoints 验证 简介 使用kubernetes启动容器时&#xff0c;一般都会配置一些探针来保证pod的健康&#xff0c;并通过terminationGracePe…...

RK3568上电启动流程详解.2 [十五]

这里我们再深入分析一下 U-Boot 启动 Kernel 的过程。 我们首先需要从 eMMC 的 boot partition 中加载 kernel Image&#xff0c;kernel dtb 以及 Ramdisk&#xff1a; > mmc partPartition Map for MMC device 0 -- Partition Type: EFIPart Start LBA End L…...