人工智能领域单词:英文解释
目录
- 1、前言
- 2、单词组1:15个
- 3、单词组2:15个
- 4、单词组3:15个
- 5、单词组4:15个
- 6、单词组5:15个
1、前言
亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:fn_kobe@163.com
2、单词组1:15个
1、人工智能(Artificial Intelligence, AI): a technology that simulates human intelligence, including machine learning, natural language processing, computer vision, and other fields.
2、机器学习 (Machine Learning, ML): a technology that enables computers to learn automatically and gradually improve their performance, including supervised learning, unsupervised learning, and reinforcement learning.
3、深度学习(Deep Learning, DL): a type of machine learning that uses neural networks with multiple layers to learn complex patterns from data.
4、自然语言处理 (Natural Language Processing, NLP): a technology that enables computers to understand and generate human language.
5、计算机视觉 (Computer Vision, CV): a technology that enables computers to interpret and understand visual data from the world.
6、神经网络 (Neural Network, NN): a type of machine learning algorithm that is modeled after the structure and function of the human brain.
7、人类智能 (Human Intelligence, HI): the intellectual capacity and abilities of humans, such as perception, learning, reasoning, and problem-solving.
8、监督学习 (Supervised Learning): a type of machine learning in which the algorithm learns from labeled examples.
9、无监督学习 (Unsupervised Learning): a type of machine learning in which the algorithm learns from unlabeled examples.
10、强化学习 (Reinforcement Learning): a type of machine learning in which the algorithm learns from feedback in the form of rewards or punishments.
11、神经元(Neuron): a fundamental building block of neural networks, which receives inputs and produces outputs based on an activation function.
12、感知器 (Perceptron): a type of neural network that consists of a single layer of neurons and is used for simple classification tasks.
13、卷积神经网络(Convolutional Neural Network, CNN): a type of neural network that is used for image recognition and processing.
14、递归神经网络 (Recurrent Neural Network, RNN): a type of neural network that is used for sequence processing and prediction.
15、遗传算法(Genetic Algorithm, GA): a method of optimization inspired by the process of natural selection, which uses principles of mutation, crossover, and selection to evolve solutions to a problem.
3、单词组2:15个
16、自动编码器 (Autoencoder, AE): a type of neural network that is used for unsupervised learning by training the network to reconstruct its input.
17、强人工智能 (Strong Artificial Intelligence): an hypothetical form of AI that would have general intelligence similar to that of a human being.
18、弱人工智能 (Weak Artificial Intelligence): a form of AI that is designed to perform specific tasks, such as speech recognition or image classification, but does not have general intelligence.
19、数据挖掘 (Data Mining): the process of analyzing large datasets to discover patterns and insights.
20、数据预处理 (Data Preprocessing): the process of cleaning, transforming, and preparing data for analysis and machine learning.
21、特征工程 (Feature Engineering): the process of selecting and extracting relevant features from raw data to improve the performance of machine learning algorithms.
22、机器视觉 (Machine Vision): a subset of computer vision that focuses on visual perception by machines, such as object detection and recognition.
23、自动化 (Automation): the use of technology and machines to perform tasks that were previously done by humans.
24、增强现实 (Augmented Reality, AR): a technology that overlays digital information onto the real world, typically through a mobile device or smart glasses.
25、虚拟现实 (Virtual Reality, VR): a technology that creates a simulated environment that can be experienced through a VR headset or other device.
26、语音识别 (Speech Recognition): a technology that enables computers to understand and transcribe human speech.
27、机器翻译 (Machine Translation): a technology that enables computers to translate text from one language to another.
28、强化学习 (Reinforcement Learning): a type of machine learning in which the algorithm learns from feedback in the form of rewards or punishments.
29、深度强化学习 (Deep Reinforcement Learning): a type of reinforcement learning that uses deep neural networks to learn complex policies and decision-making strategies.
30、知识图谱 (Knowledge Graph): a knowledge base that stores structured information about entities, relationships, and attributes in a graph database.
语言模型 (Language Model): a type of model that is used to predict the probability of a sequence of words in a language, typically used in natural language processing (NLP).
4、单词组3:15个
31、语言模型 (Language Model): a type of model that is used to predict the probability of a sequence of words in a language, typically used in natural language processing (NLP).
32、文本分类 (Text Classification): a type of NLP task that involves categorizing text into one or more predefined categories, such as spam detection or sentiment analysis.
33、图像分类 (Image Classification): a type of computer vision task that involves assigning a label or category to an image, such as identifying objects or scenes.
34、目标检测 (Object Detection): a type of computer vision task that involves identifying and localizing objects within an image or video.
35、图像分割 (Image Segmentation): a type of computer vision task that involves partitioning an image into multiple segments or regions based on their visual properties.
36、生成对抗网络 (Generative Adversarial Networks, GANs): a type of neural network architecture that consists of two networks (a generator and a discriminator) that compete with each other to generate realistic synthetic data.
37、受限玻尔兹曼机 (Restricted Boltzmann Machine, RBM): a type of neural network that is used for unsupervised learning, typically used for feature learning and data compression.
38、线性回归 (Linear Regression): a type of supervised learning algorithm that is used to model the relationship between a dependent variable and one or more independent variables.
39、逻辑回归 (Logistic Regression): a type of supervised learning algorithm that is used for binary classification problems, where the output is a probability of belonging to one of two classes.
40、支持向量机 (Support Vector Machine, SVM): a type of supervised learning algorithm that is used for classification and regression analysis, typically used for binary classification problems and data with clear margins between classes.
41、决策树 (Decision Tree): a type of supervised learning algorithm that is used for classification and regression analysis, where the model creates a tree-like structure to represent decisions and their possible consequences.
42、随机森林 (Random Forest): a type of ensemble learning method that uses multiple decision trees to improve the accuracy and robustness of the model.
43、梯度下降 (Gradient Descent): an optimization algorithm that is used to minimize the error or loss function in a model by iteratively adjusting the parameters in the direction of steepest descent.
44、反向传播 (Backpropagation): a common method used to train neural networks by propagating the error or loss back through the network and adjusting the weights based on the calculated gradients.
45、批量归一化 (Batch Normalization): a technique used in deep learning to normalize the inputs to a layer to improve the stability and speed of the training process.
5、单词组4:15个
46、卷积神经网络 (Convolutional Neural Network, CNN): a type of neural network architecture that is typically used for image and video processing, where the model uses convolutional layers to extract features from the input data.
47、循环神经网络 (Recurrent Neural Network, RNN): a type of neural network architecture that is used for sequential data processing, such as natural language processing or time series analysis, where the model uses recurrent connections to process the input data over time.
48、强化学习 (Reinforcement Learning): a type of machine learning that involves an agent learning to make decisions in an environment by receiving feedback in the form of rewards or punishments.
49、迁移学习 (Transfer Learning): a machine learning technique that involves transferring knowledge or information from one model or domain to another, typically used to improve the performance of a model with limited data.
50、多任务学习 (Multi-Task Learning): a machine learning technique that involves training a model to perform multiple tasks simultaneously, typically used to improve the generalization and efficiency of the model.
51、自编码器 (Autoencoder): a type of neural network that is used for unsupervised learning, where the model is trained to reconstruct the input data by learning a compressed representation of the data.
52、奇异值分解 (Singular Value Decomposition, SVD): a matrix factorization technique used to reduce the dimensionality of data, commonly used in recommender systems.
53、深度信念网络 (Deep Belief Network, DBN): a type of neural network architecture that is used for unsupervised learning, where the model is trained to learn a hierarchy of representations of the input data.
54、支持向量机 (Support Vector Machine, SVM): a type of supervised learning algorithm used for classification and regression analysis, where the model finds the optimal hyperplane that separates the data into different classes.
55、朴素贝叶斯 (Naive Bayes): a type of probabilistic algorithm used for classification, where the model makes predictions by calculating the probability of each class given the input data.
56、集成学习 (Ensemble Learning): a machine learning technique that involves combining multiple models to improve the performance and stability of the model.
57、神经样条回归 (Neural spline regression): a type of regression algorithm that uses neural networks to model the relationship between variables.
58、非负矩阵分解 (Non-negative Matrix Factorization, NMF): a matrix factorization technique used for feature extraction and dimensionality reduction, where the model learns non-negative weights that represent the features of the input data.
59、分层聚类 (Hierarchical Clustering): a type of unsupervised learning algorithm used for clustering analysis, where the model creates a hierarchy of clusters based on the similarity of the data.
60、数据清洗 (Data Cleaning): the process of detecting and correcting or removing errors, inconsistencies, and inaccuracies in data to improve the quality and reliability of the data.
6、单词组5:15个
61、数据预处理 (Data Preprocessing): the process of preparing data for analysis, including cleaning, transforming, and organizing data to make it suitable for machine learning algorithms.
62、数据增强 (Data Augmentation): a technique used in machine learning to increase the amount of training data by generating new data from the existing data, for example, by rotating, flipping, or cropping images.
63、数据采集 (Data Collection): the process of collecting data from various sources, including web scraping, surveys, sensors, and other data sources.
64、数据挖掘 (Data Mining): the process of analyzing large datasets to discover patterns, relationships, and insights that can be used for decision-making.
65、强化学习 (Reinforcement Learning): a type of machine learning that involves training an agent to interact with an environment by learning from feedback in the form of rewards or punishments.
66、迁移学习 (Transfer Learning): a machine learning technique that involves leveraging knowledge from one task to improve performance on another related task.
67、相似度度量 (Similarity Metrics): mathematical methods used to quantify the similarity or distance between two objects or datasets, commonly used in clustering and classification analysis.
68、网格搜索 (Grid Search): a technique used to optimize the hyperparameters of a machine learning model by exhaustively searching through a predefined grid of hyperparameters.
69、模型评估 (Model Evaluation): the process of assessing the performance of a machine learning model, commonly done using metrics such as accuracy, precision, recall, and F1 score.
70、神经机器翻译 (Neural Machine Translation, NMT): a type of machine translation system that uses neural networks to translate text from one language to another.
71、看门狗定时器 (Watchdog Timer): a system mechanism that is used to detect and recover from system failures, commonly used in embedded systems and critical applications.
72、自然语言处理 (Natural Language Processing, NLP): a subfield of artificial intelligence that focuses on the interaction between computers and humans using natural language, including tasks such as text classification, sentiment analysis, and language translation.
73、深度强化学习 (Deep Reinforcement Learning): a subfield of machine learning that combines deep learning with reinforcement learning to train agents to make decisions based on high-dimensional input data.
74、数据可视化 (Data Visualization): the process of displaying data in a graphical or pictorial format to enable easier understanding and analysis of the data.
75、数据科学 (Data Science): an interdisciplinary field that involves the extraction, analysis, and interpretation of large and complex datasets using statistical, mathematical, and machine learning techniques.
相关文章:
人工智能领域单词:英文解释
目录 1、前言2、单词组1:15个3、单词组2:15个4、单词组3:15个5、单词组4:15个6、单词组5:15个 1、前言 亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦࿰…...
工业网口相机:如何通过调整网口参数设置,优化图像传输和网络性能,达到最大帧率
项目场景 工业相机是常用与工业视觉领域的常用专业视觉核心部件,拥有多种属性,是机器视觉系统中的核心部件,具有不可替代的重要功能。 工业相机已经被广泛应用于工业生产线在线检测、智能交通,机器视觉,科研,军事科学,航天航空等众多领域 …...
NextJs - ServerAction获取文件并处理Excel
NextJs - ServerAction获取文件并处理Excel 一. 客户端二. ServerAction 处理 一. 客户端 use client; import { uploadExcel } from actions/batchInquirySystem/api; import type { UploadProps } from antd; import { Upload } from antd;/*** 创建问询内容*/ const Page …...
【深度学习项目】语义分割-FCN网络(原理、网络架构、基于Pytorch实现FCN网络)
文章目录 介绍深度学习语义分割的关键特点主要架构和技术数据集和评价指标总结 FCN网络FCN 的特点FCN 的工作原理FCN 的变体和发展FCN 的网络结构FCN 的实现(基于Pytorch)1. 环境配置2. 文件结构3. 预训练权重下载地址4. 数据集,本例程使用的…...
集群、分布式及微服务间的区别与联系
目录 单体架构介绍集群和分布式架构集群和分布式集群和分布式区别和联系 微服务架构的引入微服务带来的挑战 总结 单体架构介绍 早期很多创业公司或者传统企业会把业务的所有功能实现都打包在一个项目中,这种方式就称为单体架构 以我们都很熟悉的电商系统为例&…...
ConvBERT:通过基于跨度的动态卷积改进BERT
摘要 像BERT及其变体这样的预训练语言模型最近在各种自然语言理解任务中取得了令人印象深刻的性能。然而,BERT严重依赖于全局自注意力机制,因此存在较大的内存占用和计算成本。尽管所有的注意力头都从全局角度查询整个输入序列以生成注意力图࿰…...
C# 网络协议第三方库Protobuf的使用
为什么要使用二进制数据 通常我们写一个简单的网络通讯软件可能使用的最多的是字符串类型,比较简单,例如发送格式为(head)19|Msg:Heart|100,x,y,z…,在接收端会解析收到的socket数据。 这样通常是完全可行的,但是随着数据量变大&…...
「2024 博客之星」自研Java框架 Sunrays-Framework 使用教程
文章目录 0.序言我的成长历程遇到挫折,陷入低谷重拾信心,迎接未来开源与分享我为何如此看重这次评选最后的心声 1.概述1.主要功能2.相关链接 2.系统要求构建工具框架和语言数据库与缓存消息队列与对象存储 3.快速入门0.配置Maven中央仓库1.打开settings.…...
【Elasticsearch】Springboot编写Elasticsearch的RestAPI
RestAPI 初始化RestClient创建索引库Mapping映射 判断索引库是否存在删除索引库总结 ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。 官方文档地址 由于ES目前最新版本是8.8,提供了全…...
Swift语言的学习路线
Swift语言的学习路线 引言 在现代程序开发中,Swift语言逐渐成为了移动应用程序开发的重要工具,尤其是在iOS和macOS平台上。自2014年发布以来,Swift以其易读性和强大的功能,受到越来越多开发者的青睐。对于初学者而言,…...
63,【3】buuctf web Upload-Labs-Linux 1
进入靶场 点击pass1 查看提示 既然是上传文件,先构造一句话木马,便于用蚁剑连接 <?php eval($_POST[123])?> 将这两处的检查函数删掉 再上传木马 文件后缀写为.php 右键复制图片地址 打开蚁剑连接 先点击测试连接,显示成功后&…...
Leetcode:2239
1,题目 2,思路 循环遍历满足条件就记录,最后返回结果值 3,代码 public class Leetcode2239 {public static void main(String[] args) {System.out.println(new Solution2239().findClosestNumber(new int[]{-4, -2, 1, 4, 8})…...
自然语言处理与NLTK环境配置
自然语言处理(Natural Language Processing, NLP)是人工智能的重要分支,专注于计算机如何理解、分析和生成自然语言。自然语言是人类用于交流的语言,如中文、英文等,这使得自然语言处理成为沟通人与计算机的桥梁。近年来,NLP在诸多领域得到广泛应用,包括文本分析、语言翻…...
分布式搜索引擎02
1. DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1.1. DSL查询分类 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有数据,…...
使用 Logback 的最佳实践:`logback.xml` 与 `logback-spring.xml` 的区别与用法
在开发 Spring Boot 项目时,日志是调试和监控的重要工具。Spring Boot 默认支持 Logback 作为日志系统,并提供了 logback.xml 和 logback-spring.xml 两种配置方式。这篇文章将详细介绍这两者的区别、各自的优缺点以及最佳实践。 目录 一、什么是 Logbac…...
【爬虫开发】爬虫开发从0到1全知识教程第12篇:scrapy爬虫框架,介绍【附代码文档】
本教程的知识点为:爬虫概要 爬虫基础 爬虫概述 知识点: 1. 爬虫的概念 requests模块 requests模块 知识点: 1. requests模块介绍 1.1 requests模块的作用: 数据提取概要 数据提取概述 知识点 1. 响应内容的分类 知识点:…...
鸿蒙UI(ArkUI-方舟UI框架)-开发布局
文章目录 开发布局1、布局概述1)布局结构2)布局元素组成3)如何选择布局4)布局位置5)对子元素的约束 2、构建布局1)线性布局 (Row/Column)概述布局子元素在排列方向上的间距布局子元素在交叉轴上的对齐方式(…...
代码随想录_字符串
字符串 344.反转字符串 344. 反转字符串 编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间,你必须**原地修改输入数组**、使用 O(1) 的额外空间解决这一问题。 思路: 双指针 代…...
2025年1月17日(点亮三色LED)
系统信息: Raspberry Pi Zero 2W 系统版本: 2024-10-22-raspios-bullseye-armhf Python 版本:Python 3.9.2 已安装 pip3 支持拍摄 1080p 30 (1092*1080), 720p 60 (1280*720), 60/90 (640*480) 已安装 vim 已安装 git 学习目标:…...
Spring Boot自动配置原理:如何实现零配置启动
引言 在现代软件开发中,Spring 框架已经成为 Java 开发领域不可或缺的一部分。而 Spring Boot 的出现,更是为 Spring 应用的开发带来了革命性的变化。Spring Boot 的核心优势之一就是它的“自动配置”能力,它极大地简化了 Spring 应用的配置…...
React技术栈搭配(全栈)(MERN栈、PERN栈)
文章目录 1. MERN 栈2. PERN 栈3. React Next.js Node.js4. JAMstack (JavaScript, APIs, Markup)5. React GraphQL Node.js6. React Native Node.js结论 React作为前端框架已经成为了现代web开发的重要组成部分。在全栈开发中,React通常…...
Linux - 线程池
线程池 什么是池? 池化技术的核心就是"提前准备并重复利用资源". 减少资源创建和销毁的成本. 那么线程池就是提前准备好一些线程, 当有任务来临时, 就可以直接交给这些线程运行, 当线程完成这些任务后, 并不会被销毁, 而是继续等待任务. 那么这些线程在程序运行过程…...
以Python构建ONE FACE管理界面:从基础至进阶的实战探索
一、引言 1.1 研究背景与意义 在人工智能技术蓬勃发展的当下,面部识别技术凭借其独特优势,于安防、金融、智能终端等众多领域广泛应用。在安防领域,可助力监控系统精准识别潜在威胁人员,提升公共安全保障水平;金融行业中,实现刷脸支付、远程开户等便捷服务,优化用户体…...
使用Sum计算Loss和解决梯度累积(Gradient Accumulation)的Bug
使用Sum计算Loss和解决梯度累积的Bug 学习 https://unsloth.ai/blog/gradient:Bugs in LLM Training - Gradient Accumulation Fix 这篇文章的记录。 在深度学习训练过程中,尤其是在大批量(large batch)训练中,如何高…...
mfc操作json示例
首先下载cJSON,加入项目; 构建工程,如果出现, fatal error C1010: unexpected end of file while looking for precompiled head 在cJSON.c文件的头部加入#include "stdafx.h"; 看情况,可能是加到.h或者是.cpp文件的头部,它如果有包含头文件, #include &…...
C语言练习(18)
一个班10个学生的成绩,存放在一个一维数组中,要求找出其中成绩最高的学生成绩和该生的序号。 #include <stdio.h>#define STUDENT_NUM 10 // 定义学生数量int main() {int scores[STUDENT_NUM]; // 定义存储学生成绩的一维数组int i;// 输入10个…...
LeetCode 热题 100_全排列(55_46_中等_C++)(递归(回溯))
LeetCode 热题 100_两数之和(55_46) 题目描述:输入输出样例:题解:解题思路:思路一(递归(回溯)): 代码实现代码实现(思路一(…...
编译chromium笔记
编译环境: windows10 powershell7.2.24 git 2.47.1 https://storage.googleapis.com/chrome-infra/depot_tools.zip 配置git git config --global user.name "John Doe" git config --global user.email "jdoegmail.com" git config --global …...
PHP语言的数据库编程
PHP语言的数据库编程 引言 随着互联网的发展,动态网站已成为主流,而动态网站的核心就是与数据库进行交互。PHP(超文本预处理器)是一种流行的开源服务器端脚本语言,被广泛用于Web开发。它以其简单易学和功能强大而受到…...
【PGCCC】PostgreSQL 中表级锁的剖析
本博客解释了 PostgreSQL 中的锁定机制,重点关注数据定义语言 (DDL) 操作所需的表级锁定。 锁定还是解锁的艺术? 人们通常将数据库锁与物理锁进行比较,这甚至可能导致您订购有关锁的历史、波斯锁和撬锁技术的书籍。我们大多数人可能都是通过…...
1.10 自洽性(Self-Consistency):多路径推理的核心力量
自洽性(Self-Consistency):多路径推理的核心力量 随着人工智能尤其是大规模语言模型的不断进化,如何提升其推理能力和决策准确性成为了研究的重点。在这一背景下,**自洽性(Self-Consistency)**作为一种新的推理方法,逐渐展现出其强大的潜力。自洽性方法通过多路径推理…...
【24】Word:小郑-准考证❗
目录 题目 准考证.docx 邮件合并-指定考生生成准考证 Word.docx 表格内容居中表格整体相较于页面居中 考试时一定要做一问保存一问❗ 题目 准考证.docx 插入→表格→将文本转换成表格→✔制表符→确定选中第一列→单击右键→在第一列的右侧插入列→布局→合并单元格&#…...
Linux 信号(Signal)详解
信号(Signal)是 Linux 系统中用于进程间通信的一种机制。它是一种异步通知,用于通知进程发生了某个事件。信号可以来自内核、其他进程或进程自身。 信号的基本概念 信号的作用: 通知进程发生了某个事件(如用户按下 Ct…...
【数据分享】1929-2024年全球站点的逐年最低气温数据(Shp\Excel\免费获取)
气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标!说到气象数据,最详细的气象数据是具体到气象监测站点的数据! 有关气象指标的监测站点数据,之前我们分享过1929-2024年全球气象站点…...
app版本控制java后端接口版本管理
java api version 版本控制 java接口版本管理 1 自定义 AppVersionHandleMapping 自定义AppVersionHandleMapping实现RequestMappingHandlerMapping里面的方法 public class AppVersionHandleMapping extends RequestMappingHandlerMapping {Overrideprotected RequestCondit…...
2024年度总结-CSDN
2024年CSDN年度总结 Author:OnceDay Date:2025年1月21日 一位热衷于Linux学习和开发的菜鸟,试图谱写一场冒险之旅,也许终点只是一场白日梦… 漫漫长路,有人对你微笑过嘛… 文章目录 2024年CSDN年度总结1. 整体回顾2…...
基于python的博客系统设计与实现
摘要:目前,对于信息的获取是十分的重要,我们要做到的不是裹足不前,而是应该主动获取和共享给所有人。博客系统就能够实现信息获取与分享的功能,博主在发表文章后,互联网上的其他用户便可以看到,…...
服务器日志自动上传到阿里云OSS备份
背景 公司服务器磁盘空间有限,只能存近15天日志,但是有时需要查看几个月前的日志,需要将服务器日志定时备份到某个地方,需要查询的时候有地方可查。 针对这个问题,想到3个解决方法: 1、买一个配置比较低…...
优化使用 Flask 构建视频转 GIF 工具
优化使用 Flask 构建视频转 GIF 工具 优化后的项目概述 在优化后的版本中,我们将实现以下功能: 可设置每个 GIF 的帧率和大小:用户可以选择 GIF 的帧率和输出大小。改进的用户界面:使用更现代的设计使界面更美观、整洁。自定义…...
leetcode:511. 游戏玩法分析 I
难度:简单 SQL Schema > Pandas Schema > 活动表 Activity: ----------------------- | Column Name | Type | ----------------------- | player_id | int | | device_id | int | | event_date | date | | games_playe…...
windows git bash 使用zsh 并集成 oh my zsh
参考了 这篇文章 进行配置,记录了自己的踩坑过程,并增加了 zsh-autosuggestions 插件的集成。 主要步骤: 1. git bash 这个就不说了,自己去网上下,windows 使用git时候 命令行基本都有它。 主要也是用它不方便&…...
【Python运维】Python与网络监控:如何编写网络探测与流量分析工具
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着互联网技术的快速发展,网络性能的监控与分析成为保障信息系统稳定运行的关键环节。本文深入探讨了如何利用Python语言构建高效的网络探…...
OpenCV相机标定与3D重建(61)处理未校准的立体图像对函数stereoRectifyUncalibrated()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 为未校准的立体相机计算一个校正变换。 cv::stereoRectifyUncalibrated 是 OpenCV 库中的一个函数,用于处理未校准的立体图像对。该函…...
字玩FontPlayer开发笔记12 Vue3撤销重做功能
字玩FontPlayer开发笔记12 Vue3撤销重做功能 字玩FontPlayer是笔者开源的一款字体设计工具,使用Vue3 ElementUI开发,源代码:github | gitee 笔记 撤销重做功能是设计工具必不可少的模块,以前尝试使用成熟的库实现撤销重做功能…...
无人机图传模块:深入理解其工作原理与实际效用
无人机图传模块作为无人机系统的关键组成部分,承担着将无人机拍摄的图像和视频实时传输至地面控制站或接收设备的重任。本文将深入探讨无人机图传模块的工作原理及其在实际应用中的效用,帮助读者更好地理解这一技术的奥秘。 一、无人机图传模块的工作原…...
PDF文件提取开源工具调研总结
概述 PDF是一种日常工作中广泛使用的跨平台文档格式,常常包含丰富的内容:包括文本、图表、表格、公式、图像。在现代信息处理工作流中发挥了重要的作用,尤其是RAG项目中,通过将非结构化数据转化为结构化和可访问的信息࿰…...
Linux(Centos 7.6)命令详解:dos2unix
1.命令作用 将Windows格式文件件转换为Unix、Linux格式的文件(也可以转换成其他格式的) 2.命令语法 Usage: dos2unix [options] [file ...] [-n infile outfile ...] 3.参数详解 options: -c, --convmode,转换方式,支持ascii, 7bit, iso, mac,默认…...
梯度提升决策树树(GBDT)公式推导
### 逻辑回归的损失函数 逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为: \[ P(y 1 | x) \frac{1}{1 e^{-F(x)}} \] 其中 \( F(x) \) 是一个线性组合函数,通常表示为ÿ…...
跨域问题分析及解决方案
1、跨域 指的是浏览器不能执行其他网站的脚本。它是由浏览器的同源策略造成的,是浏览器对javascript施加的安全限制。 2、同源策略:是指协议,域名,端口都要相同,其中有一个不同都会产生跨域; 3、跨域流程…...
【三国游戏——贪心、排序】
题目 代码 #include <bits/stdc.h> using namespace std; using ll long long; const int N 1e510; int a[N], b[N], c[N]; int w[4][N]; int main() {int n;cin >> n;for(int i 1; i < n; i)cin >> a[i];for(int i 1; i < n; i)cin >> b[i…...