当前位置: 首页 > news >正文

机器学习之决策树(DecisionTree)

决策树中选择哪一个特征进行分裂,称之为特征选择。
特征选择是找出某一个特征使得分裂后两边的样本都有最好的“归宿”,即左边分支的样本属于一个类别、右边分支的样本属于另外一个类别,左边和右边分支包含的样本尽可能分属同一类别,此时分裂节点的纯度(purity)高,能够表征这种纯度高低的常用指标是信息熵(information entropy)。
假设有一个数据集 D D D,包含 N N N个样本( n = 1 , 2 , 3 , . . . , N n=1,2,3,...,N n=1,2,3,...,N),每一个样本有 k k k个属性( k = 1 , 2 , 3 , . . . , K k=1,2,3,...,K k=1,2,3,...,K),样本共计有 C C C个类别( c = 1 , 2 , 3 , . . . , C c=1,2,3,...,C c=1,2,3,...,C),则 D D D的信息熵可定义为:
E n t r o p y ( D ) = − ∑ c = 1 C p c log ⁡ p c = − ∑ c = 1 C N c N log ⁡ N c N (1) Entropy(D)=-\sum_{c=1}^{C}p_c \log {p_c}=-\sum_{c=1}^{C}\frac{N_c}{N} \log \frac{N_c}{N}\tag{1} Entropy(D)=c=1Cpclogpc=c=1CNNclogNNc(1)
( 1 ) (1) (1)中, p c p_c pc表示数据集 D D D中第 c c c类样本所占的比例, N c N_c Nc表示第 c c c类样本的数量, E n t r o p y ( D ) Entropy(D) Entropy(D)的值越小,则 D D D的纯度越高。

假设离散属性 A A A有个取值 M M M m = 1 , 2 , 3 , . . . , M m=1,2,3,...,M m=1,2,3,...,M),若使用属性A对样本集 D D D进行分裂,则会将数据集划分为 M M M个子集 D m D^m Dm,每个子集包含的样本数记为 N m N_m Nm,根据式 ( 1 ) (1) (1)计算出 D m D^m Dm的信息熵,考虑到不同的子集所包含的样本数不同,分别给每个子集赋予权重 N m / N N_m/N Nm/N,计算属性A对于样本集 D D D进行划分所得的信息增益(information gain):
G a i n ( D , A ) = E n t r o p y ( D ) − ∑ m = 1 M N m N E n t r o p y ( D m ) = E n t r o p y ( D ) − ∑ m = 1 M N m N ∑ c = 1 C ( − N m c N m log ⁡ N m c N m ) (2) \begin{aligned} Gain(D,A)&=Entropy(D)-\sum_{m=1}^{M}\frac{N_m}{N}Entropy(D^m)\\ &=Entropy(D)-\sum_{m=1}^{M}\frac{N_m}{N}\sum_{c=1}^{C}(-\frac{N_{mc}}{N_m}\log\frac{N_{mc}}{N_m})\tag{2} \end{aligned} Gain(D,A)=Entropy(D)m=1MNNmEntropy(Dm)=Entropy(D)m=1MNNmc=1C(NmNmclogNmNmc)(2)
( 2 ) (2) (2)中, N m c N_{mc} Nmc表示子集 D m D^m Dm中类别为 c c c的样本的个数。

表1 西瓜数据集
编号色泽根蒂敲声纹理脐部触感好瓜
1青绿蜷缩浊响清晰凹陷硬滑
2乌黑蜷缩沉闷清晰凹陷硬滑
3乌黑蜷缩浊响清晰凹陷硬滑
4青绿蜷缩沉闷清晰凹陷硬滑
5浅白蜷缩浊响清晰凹陷硬滑
6青绿稍蜷浊响清晰稍凹软粘
7乌黑稍蜷浊响稍糊稍凹软粘
8乌黑稍蜷浊响清晰稍凹硬滑
9乌黑稍蜷沉闷稍糊稍凹硬滑
10青绿硬挺清脆清晰平坦软粘
11浅白硬挺清脆模糊平坦硬滑
12浅白蜷缩浊响模糊平坦软粘
13青绿稍蜷浊响稍糊凹陷硬滑
14浅白稍蜷沉闷稍糊凹陷硬滑
15乌黑稍蜷浊响清晰稍凹软粘
16浅白蜷缩浊响模糊平坦硬滑
17青绿蜷缩沉闷稍糊稍凹硬滑

以表1中的西瓜数据集为例,数据集包含17个样本( n = 1 , 2 , 3 , . . . , 17 n=1,2,3,...,17 n=1,2,3,...,17),每个样本有6个属性( k = 1 , 2 , 3 , . . . , 6 k=1,2,3,...,6 k=1,2,3,...,6),样本共计有2个类别( c = 是 , 否 c=是,否 c=,)。

1.17个样本中,好瓜样本有8个、差瓜样本有9个,数据集 D D D的信息熵为:
E n t r o p y ( D ) = − 8 17 log ⁡ 8 17 − 9 17 log ⁡ 9 17 = 0.9975 (3) Entropy(D)=-\frac{8}{17} \log \frac{8}{17}-\frac{9}{17} \log \frac{9}{17}=0.9975\tag{3} Entropy(D)=178log178179log179=0.9975(3)

2.计算属性集合{色泽, 根蒂, 敲声, 纹理, 脐部, 触感}中每个属性的信息增益,以属性"触感"为例,有{硬滑, 软粘}两个取值:

  • D 1 D^1 D1(触感=硬滑):包含编号为{1,2,3,4,5,8,9,11,13,14,16,17}的12个样本,其中好瓜有{1,2,3,4,5,8}的6个样本、差瓜有{9,11,13,14,16,17}的6个样本;

  • D 2 D^2 D2(触感=软粘):{6,7,10,12,15}的5个样本,其中好瓜有{6,7}的2个样本、差瓜有{10,12,15}的3个样本。

    根据式 ( 1 ) (1) (1)计算上述两个子集的信息熵:
    E n t r o p y ( D 1 ) = − 6 12 log ⁡ 6 12 − 6 12 log ⁡ 6 12 = 1.000 E n t r o p y ( D 2 ) = − 2 5 log ⁡ 2 5 − 3 5 log ⁡ 3 5 = 0.9709 \begin{aligned} Entropy(D^1)&=-\frac{6}{12} \log \frac{6}{12}-\frac{6}{12} \log \frac{6}{12}=1.000\\ Entropy(D^2)&=-\frac{2}{5} \log \frac{2}{5}-\frac{3}{5} \log \frac{3}{5}=0.9709 \end{aligned} Entropy(D1)Entropy(D2)=126log126126log126=1.000=52log5253log53=0.9709

3.根据式 ( 2 ) (2) (2)计算属性"触感"的信息增益:
G a i n ( D , 触感 ) = E n t r o p y ( D ) − ∑ m = 1 M N m N E n t r o p y ( D m ) = 0.9975 − ( 12 17 × 1.0000 + 5 17 × 0.9709 ) = 0.0061 \begin{aligned} Gain(D,触感)&=Entropy(D)-\sum_{m=1}^{M}\frac{N_m}{N}Entropy(D^m)\\ &=0.9975-(\frac{12}{17}\times1.0000+\frac{5}{17}\times0.9709)\\ &=0.0061 \end{aligned} Gain(D,触感)=Entropy(D)m=1MNNmEntropy(Dm)=0.9975(1712×1.0000+175×0.9709)=0.0061
4.根据式 ( 2 ) (2) (2)计算其他属性的信息增益:
G a i n ( D , 色泽 ) = 0.9975 − [ 6 17 × E n t r o p y ( 色泽 = 青绿 ) + 6 17 × E n t r o p y ( 色泽 = 乌黑 ) + 5 17 × E n t r o p y ( 色泽 = 浅白 ) ] = 0.9975 − [ 6 17 × ( − ( 3 6 log ⁡ 3 6 + 3 6 log ⁡ 3 6 ) ) + 6 17 × ( − ( 4 6 log ⁡ 4 6 + 2 6 log ⁡ 2 6 ) ) + 5 17 × ( − ( 1 5 log ⁡ 1 5 + 4 5 log ⁡ 4 5 ) ) ] = 0.1081 G a i n ( D , 根蒂 ) = 0.9975 − [ 8 17 × E n t r o p y ( 根蒂 = 蜷缩 ) + 7 17 × E n t r o p y ( 根蒂 = 稍蜷 ) + 2 17 × E n t r o p y ( 根蒂 = 硬挺 ) ] = 0.9975 − [ 8 17 × ( − ( 5 8 log ⁡ 5 8 + 3 8 log ⁡ 3 8 ) ) + 7 17 × ( − ( 3 7 log ⁡ 3 7 + 4 7 log ⁡ 4 7 ) ) + 2 17 × ( − ( 0 2 log ⁡ 0 2 + 2 2 log ⁡ 2 2 ) ) ] = 0.1426 G a i n ( D , 敲声 ) = 0.9975 − [ 10 17 × E n t r o p y ( 敲声 = 浊响 ) + 5 17 × E n t r o p y ( 敲声 = 沉闷 ) + 2 17 × E n t r o p y ( 敲声 = 清脆 ) ] = 0.9975 − [ 10 17 × ( − ( 6 10 log ⁡ 6 10 + 4 10 log ⁡ 4 10 ) ) + 5 17 × ( − ( 2 5 log ⁡ 2 5 + 3 5 log ⁡ 3 5 ) ) + 2 17 × ( − ( 0 2 log ⁡ 0 2 + 2 2 log ⁡ 2 2 ) ) ] = 0.1407 G a i n ( D , 纹理 ) = 0.9975 − [ 9 17 × E n t r o p y ( 纹理 = 清晰 ) + 5 17 × E n t r o p y ( 纹理 = 稍糊 ) + 3 17 × E n t r o p y ( 纹理 = 模糊 ) ] = 0.9975 − [ 9 17 × ( − ( 7 9 log ⁡ 7 9 + 2 9 log ⁡ 2 9 ) ) + 5 17 × ( − ( 1 5 log ⁡ 1 5 + 4 5 log ⁡ 4 5 ) ) + 3 17 × ( − ( 0 3 log ⁡ 0 3 + 3 3 log ⁡ 3 3 ) ) ] = 0.3805 G a i n ( D , 脐部 ) = 0.9975 − [ 7 17 × E n t r o p y ( 脐部 = 凹陷 ) + 6 17 × E n t r o p y ( 脐部 = 稍凹 ) + 3 17 × E n t r o p y ( 脐部 = 平坦 ) ] = 0.9975 − [ 7 17 × ( − ( 5 7 log ⁡ 5 7 + 2 7 log ⁡ 2 7 ) ) + 6 17 × ( − ( 3 6 log ⁡ 3 6 + 3 6 log ⁡ 3 6 ) ) + 4 17 × ( − ( 0 4 log ⁡ 0 4 + 4 4 log ⁡ 4 4 ) ) ] = 0.2891 \begin{aligned} Gain(D,色泽)&=0.9975-[\frac{6}{17}\times Entropy(色泽=青绿)+\frac{6}{17}\times Entropy(色泽=乌黑)+\frac{5}{17}\times Entropy(色泽=浅白)]\\ &=0.9975-[\frac{6}{17}\times(-(\frac{3}{6}\log\frac{3}{6}+\frac{3}{6}\log\frac{3}{6}))+\frac{6}{17}\times(-(\frac{4}{6}\log\frac{4}{6}+\frac{2}{6}\log\frac{2}{6}))+\frac{5}{17}\times(-(\frac{1}{5}\log\frac{1}{5}+\frac{4}{5}\log\frac{4}{5}))]\\ &=0.1081\\ Gain(D,根蒂)&=0.9975-[\frac{8}{17}\times Entropy(根蒂=蜷缩)+\frac{7}{17}\times Entropy(根蒂=稍蜷)+\frac{2}{17}\times Entropy(根蒂=硬挺)]\\ &=0.9975-[\frac{8}{17}\times(-(\frac{5}{8}\log\frac{5}{8}+\frac{3}{8}\log\frac{3}{8}))+\frac{7}{17}\times(-(\frac{3}{7}\log\frac{3}{7}+\frac{4}{7}\log\frac{4}{7}))+\frac{2}{17}\times(-(\frac{0}{2}\log\frac{0}{2}+\frac{2}{2}\log\frac{2}{2}))]\\ &=0.1426\\ Gain(D,敲声)&=0.9975-[\frac{10}{17}\times Entropy(敲声=浊响)+\frac{5}{17}\times Entropy(敲声=沉闷)+\frac{2}{17}\times Entropy(敲声=清脆)]\\ &=0.9975-[\frac{10}{17}\times(-(\frac{6}{10}\log\frac{6}{10}+\frac{4}{10}\log\frac{4}{10}))+\frac{5}{17}\times(-(\frac{2}{5}\log\frac{2}{5}+\frac{3}{5}\log\frac{3}{5}))+\frac{2}{17}\times(-(\frac{0}{2}\log\frac{0}{2}+\frac{2}{2}\log\frac{2}{2}))]\\ &=0.1407\\ Gain(D,纹理)&=0.9975-[\frac{9}{17}\times Entropy(纹理=清晰)+\frac{5}{17}\times Entropy(纹理=稍糊)+\frac{3}{17}\times Entropy(纹理=模糊)]\\ &=0.9975-[\frac{9}{17}\times(-(\frac{7}{9}\log\frac{7}{9}+\frac{2}{9}\log\frac{2}{9}))+\frac{5}{17}\times(-(\frac{1}{5}\log\frac{1}{5}+\frac{4}{5}\log\frac{4}{5}))+\frac{3}{17}\times(-(\frac{0}{3}\log\frac{0}{3}+\frac{3}{3}\log\frac{3}{3}))]\\ &=0.3805\\ Gain(D,脐部)&=0.9975-[\frac{7}{17}\times Entropy(脐部=凹陷)+\frac{6}{17}\times Entropy(脐部=稍凹)+\frac{3}{17}\times Entropy(脐部=平坦)]\\ &=0.9975-[\frac{7}{17}\times(-(\frac{5}{7}\log\frac{5}{7}+\frac{2}{7}\log\frac{2}{7}))+\frac{6}{17}\times(-(\frac{3}{6}\log\frac{3}{6}+\frac{3}{6}\log\frac{3}{6}))+\frac{4}{17}\times(-(\frac{0}{4}\log\frac{0}{4}+\frac{4}{4}\log\frac{4}{4}))]\\ &=0.2891\\ \end{aligned} Gain(D,色泽)Gain(D,根蒂)Gain(D,敲声)Gain(D,纹理)Gain(D,脐部)=0.9975[176×Entropy(色泽=青绿)+176×Entropy(色泽=乌黑)+175×Entropy(色泽=浅白)]=0.9975[176×((63log63+63log63))+176×((64log64+62log62))+175×((51log51+54log54))]=0.1081=0.9975[178×Entropy(根蒂=蜷缩)+177×Entropy(根蒂=稍蜷)+172×Entropy(根蒂=硬挺)]=0.9975[178×((85log85+83log83))+177×((73log73+74log74))+172×((20log20+22log22))]=0.1426=0.9975[1710×Entropy(敲声=浊响)+175×Entropy(敲声=沉闷)+172×Entropy(敲声=清脆)]=0.9975[1710×((106log106+104log104))+175×((52log52+53log53))+172×((20log20+22log22))]=0.1407=0.9975[179×Entropy(纹理=清晰)+175×Entropy(纹理=稍糊)+173×Entropy(纹理=模糊)]=0.9975[179×((97log97+92log92))+175×((51log51+54log54))+173×((30log30+33log33))]=0.3805=0.9975[177×Entropy(脐部=凹陷)+176×Entropy(脐部=稍凹)+173×Entropy(脐部=平坦)]=0.9975[177×((75log75+72log72))+176×((63log63+63log63))+174×((40log40+44log44))]=0.2891
上述计算过程中有一种特殊情况:某属性(根蒂=硬挺、敲声=清脆、纹理=模糊、脐部=平坦)分裂时,属性某个取值对应的样本全是反例,正例数量为0,此时其信息熵为:
E = − ( 1 × log ⁡ ( 1 ) + 0 × log ⁡ ( 0 ) ) E=-(1\times \log(1)+0\times \log(0)) E=(1×log(1)+0×log(0))
在数学上,由于 lim ⁡ x → 0 x log ⁡ ( x ) = 0 \lim_{x→0}x\log(x)=0 limx0xlog(x)=0,因此上述情况的信息熵为0

5.根据最大信息增益选择分裂属性,即选择属性"纹理"进行分裂,分裂后的样本分布:

属性: 取值样本好瓜差瓜信息熵
纹理:清晰{1,2,3,4,5,6,8,10,15}{1,2,3,4,5,6,8}{10,15} E ( 纹理 = 清晰 ) = − ( 7 9 log ⁡ 7 9 + 2 9 log ⁡ 2 9 ) = 0.7642 E(纹理=清晰)=-(\frac{7}{9}\log\frac{7}{9}+\frac{2}{9}\log\frac{2}{9})=0.7642 E(纹理=清晰)=(97log97+92log92)=0.7642
纹理:稍糊{7,9,13,14,17}{7}{9,13,14,17} E ( 纹理 = 稍糊 ) = − ( 1 5 log ⁡ 1 5 + 4 5 log ⁡ 4 5 ) = 0.7219 E(纹理=稍糊)=-(\frac{1}{5}\log\frac{1}{5}+\frac{4}{5}\log\frac{4}{5})=0.7219 E(纹理=稍糊)=(51log51+54log54)=0.7219
纹理:模糊{11,12,16}{}{11,12,16} E ( 纹理 = 模糊 ) = − ( 0 3 log ⁡ 0 3 + 3 3 log ⁡ 3 3 ) = 0.0000 E(纹理=模糊 )=-(\frac{0}{3}\log\frac{0}{3}+\frac{3}{3}\log\frac{3}{3})=0.0000 E(纹理=模糊)=(30log30+33log33)=0.0000
表2 西瓜数据集——纹理=清晰
编号色泽根蒂敲声纹理脐部触感好瓜
1青绿蜷缩浊响清晰凹陷硬滑
2乌黑蜷缩沉闷清晰凹陷硬滑
3乌黑蜷缩浊响清晰凹陷硬滑
4青绿蜷缩沉闷清晰凹陷硬滑
5浅白蜷缩浊响清晰凹陷硬滑
6青绿稍蜷浊响清晰稍凹软粘
8乌黑稍蜷浊响清晰稍凹硬滑
10青绿硬挺清脆清晰平坦软粘
15乌黑稍蜷浊响清晰稍凹软粘

G a i n ( D 纹理 = 清晰 , 色泽 ) = 0.7642 − [ 4 9 × E n t r o p y ( 色泽 = 青绿 ) + 4 9 × E n t r o p y ( 色泽 = 乌黑 ) + 1 9 × E n t r o p y ( 色泽 = 浅白 ) ] = 0.7642 − [ 4 9 × ( − ( 3 4 log ⁡ 3 4 + 1 4 log ⁡ 1 4 ) ) + 4 9 × ( − ( 3 4 log ⁡ 3 4 + 1 4 log ⁡ 1 4 ) ) + 1 9 × ( − ( 1 1 log ⁡ 1 1 + 0 1 log ⁡ 0 1 ) ) ] = 0.0430 G a i n ( D 纹理 = 清晰 , 根蒂 ) = 0.7642 − [ 5 9 × E n t r o p y ( 根蒂 = 蜷缩 ) + 3 9 × E n t r o p y ( 根蒂 = 稍蜷 ) + 1 9 × E n t r o p y ( 根蒂 = 硬挺 ) ] = 0.7642 − [ 5 9 × ( − ( 5 5 log ⁡ 5 5 + 0 0 log ⁡ 0 0 ) ) + 3 9 × ( − ( 2 3 log ⁡ 2 3 + 1 3 log ⁡ 1 3 ) ) + 1 9 × ( − ( 0 1 log ⁡ 0 1 + 1 1 log ⁡ 1 1 ) ) ] = 0.4581 G a i n ( D 纹理 = 清晰 , 敲声 ) = 0.7642 − [ 6 9 × E n t r o p y ( 敲声 = 浊响 ) + 2 9 × E n t r o p y ( 敲声 = 沉闷 ) + 1 9 × E n t r o p y ( 敲声 = 清脆 ) ] = 0.7642 − [ 6 9 × ( − ( 5 6 log ⁡ 5 6 + 1 6 log ⁡ 1 6 ) ) + 2 9 × ( − ( 2 2 log ⁡ 2 2 + 0 0 log ⁡ 0 0 ) ) + 1 9 × ( − ( 0 0 log ⁡ 0 0 + 1 1 log ⁡ 1 1 ) ) ] = 0.3308 G a i n ( D 纹理 = 清晰 , 脐部 ) = 0.7642 − [ 5 9 × E n t r o p y ( 脐部 = 凹陷 ) + 3 9 × E n t r o p y ( 脐部 = 稍凹 ) + 1 9 × E n t r o p y ( 脐部 = 平坦 ) ] = 0.7642 − [ 5 9 × ( − ( 5 5 log ⁡ 5 5 + 0 5 log ⁡ 0 5 ) ) + 3 9 × ( − ( 2 3 log ⁡ 2 3 + 1 3 log ⁡ 1 3 ) ) + 1 9 × ( − ( 0 0 log ⁡ 0 0 + 1 1 log ⁡ 1 1 ) ) ] = 0.4581 G a i n ( D 纹理 = 清晰 , 触感 ) = 0.7642 − [ 6 9 × E n t r o p y ( 触感 = 硬滑 ) + 3 9 × E n t r o p y ( 触感 = 软粘 ) ] = 0.7642 − [ 6 9 × ( − ( 6 6 log ⁡ 6 6 + 0 6 log ⁡ 0 6 ) ) + 3 9 × ( − ( 2 3 log ⁡ 2 3 + 1 3 log ⁡ 1 3 ) ) ] = 0.4581 \begin{aligned} Gain(D^{纹理=清晰},色泽)&=0.7642-[\frac{4}{9}\times Entropy(色泽=青绿)+\frac{4}{9}\times Entropy(色泽=乌黑)+\frac{1}{9}\times Entropy(色泽=浅白)]\\ &=0.7642-[\frac{4}{9}\times(-(\frac{3}{4}\log\frac{3}{4}+\frac{1}{4}\log\frac{1}{4}))+\frac{4}{9}\times(-(\frac{3}{4}\log\frac{3}{4}+\frac{1}{4}\log\frac{1}{4}))+\frac{1}{9}\times(-(\frac{1}{1}\log\frac{1}{1}+\frac{0}{1}\log\frac{0}{1}))]\\ &=0.0430\\ Gain(D^{纹理=清晰},根蒂)&=0.7642-[\frac{5}{9}\times Entropy(根蒂=蜷缩)+\frac{3}{9}\times Entropy(根蒂=稍蜷)+\frac{1}{9}\times Entropy(根蒂=硬挺)]\\ &=0.7642-[\frac{5}{9}\times(-(\frac{5}{5}\log\frac{5}{5}+\frac{0}{0}\log\frac{0}{0}))+\frac{3}{9}\times(-(\frac{2}{3}\log\frac{2}{3}+\frac{1}{3}\log\frac{1}{3}))+\frac{1}{9}\times(-(\frac{0}{1}\log\frac{0}{1}+\frac{1}{1}\log\frac{1}{1}))]\\ &=0.4581\\ Gain(D^{纹理=清晰},敲声)&=0.7642-[\frac{6}{9}\times Entropy(敲声=浊响)+\frac{2}{9}\times Entropy(敲声=沉闷)+\frac{1}{9}\times Entropy(敲声=清脆)]\\ &=0.7642-[\frac{6}{9}\times(-(\frac{5}{6}\log\frac{5}{6}+\frac{1}{6}\log\frac{1}{6}))+\frac{2}{9}\times(-(\frac{2}{2}\log\frac{2}{2}+\frac{0}{0}\log\frac{0}{0}))+\frac{1}{9}\times(-(\frac{0}{0}\log\frac{0}{0}+\frac{1}{1}\log\frac{1}{1}))]\\ &=0.3308\\ Gain(D^{纹理=清晰},脐部)&=0.7642-[\frac{5}{9}\times Entropy(脐部=凹陷)+\frac{3}{9}\times Entropy(脐部=稍凹)+\frac{1}{9}\times Entropy(脐部=平坦)]\\ &=0.7642-[\frac{5}{9}\times(-(\frac{5}{5}\log\frac{5}{5}+\frac{0}{5}\log\frac{0}{5}))+\frac{3}{9}\times(-(\frac{2}{3}\log\frac{2}{3}+\frac{1}{3}\log\frac{1}{3}))+\frac{1}{9}\times(-(\frac{0}{0}\log\frac{0}{0}+\frac{1}{1}\log\frac{1}{1}))]\\ &=0.4581\\ Gain(D^{纹理=清晰},触感)&=0.7642-[\frac{6}{9}\times Entropy(触感=硬滑)+\frac{3}{9}\times Entropy(触感=软粘)]\\ &=0.7642-[\frac{6}{9}\times(-(\frac{6}{6}\log\frac{6}{6}+\frac{0}{6}\log\frac{0}{6}))+\frac{3}{9}\times(-(\frac{2}{3}\log\frac{2}{3}+\frac{1}{3}\log\frac{1}{3}))]\\ &=0.4581\\ \end{aligned} Gain(D纹理=清晰,色泽)Gain(D纹理=清晰,根蒂)Gain(D纹理=清晰,敲声)Gain(D纹理=清晰,脐部)Gain(D纹理=清晰,触感)=0.7642[94×Entropy(色泽=青绿)+94×Entropy(色泽=乌黑)+91×Entropy(色泽=浅白)]=0.7642[94×((43log43+41log41))+94×((43log43+41log41))+91×((11log11+10log10))]=0.0430=0.7642[95×Entropy(根蒂=蜷缩)+93×Entropy(根蒂=稍蜷)+91×Entropy(根蒂=硬挺)]=0.7642[95×((55log55+00log00))+93×((32log32+31log31))+91×((10log10+11log11))]=0.4581=0.7642[96×Entropy(敲声=浊响)+92×Entropy(敲声=沉闷)+91×Entropy(敲声=清脆)]=0.7642[96×((65log65+61log61))+92×((22log22+00log00))+91×((00log00+11log11))]=0.3308=0.7642[95×Entropy(脐部=凹陷)+93×Entropy(脐部=稍凹)+91×Entropy(脐部=平坦)]=0.7642[95×((55log55+50log50))+93×((32log32+31log31))+91×((00log00+11log11))]=0.4581=0.7642[96×Entropy(触感=硬滑)+93×Entropy(触感=软粘)]=0.7642[96×((66log66+60log60))+93×((32log32+31log31))]=0.4581
“根蒂”、“脐部”、"触感"3个属性的信息增益均达到最大,可任选其一继续分裂。

表3 西瓜数据集——纹理=稍糊
编号色泽根蒂敲声纹理脐部触感好瓜
7乌黑稍蜷浊响稍糊稍凹软粘
9乌黑稍蜷沉闷稍糊稍凹硬滑
13青绿稍蜷浊响稍糊凹陷硬滑
14浅白稍蜷沉闷稍糊凹陷硬滑
17青绿蜷缩沉闷稍糊稍凹硬滑

G a i n ( D 纹理 = 稍糊 , 色泽 ) = 0.7219 − [ 4 5 × E n t r o p y ( 色泽 = 青绿 ) + 4 5 × E n t r o p y ( 色泽 = 乌黑 ) + 1 5 × E n t r o p y ( 色泽 = 浅白 ) ] = 0.7219 − [ 2 5 × ( − ( 0 2 log ⁡ 0 2 + 2 2 log ⁡ 2 2 ) ) + 2 5 × ( − ( 1 2 log ⁡ 1 2 + 1 2 log ⁡ 1 2 ) ) + 1 5 × ( − ( 0 1 log ⁡ 0 1 + 1 1 log ⁡ 1 1 ) ) ] = 0.3219 G a i n ( D 纹理 = 稍糊 , 根蒂 ) = 0.7219 − [ 4 5 × E n t r o p y ( 根蒂 = 稍蜷 ) + 1 5 × E n t r o p y ( 根蒂 = 蜷缩 ) ] = 0.7219 − [ 4 5 × ( − ( 1 4 log ⁡ 1 4 + 3 4 log ⁡ 3 4 ) ) + 1 5 × ( − ( 0 1 log ⁡ 0 1 + 1 1 log ⁡ 1 1 ) ) ] = 0.0728 G a i n ( D 纹理 = 稍糊 , 敲声 ) = 0.7219 − [ 2 3 × E n t r o p y ( 敲声 = 浊响 ) + 3 5 × E n t r o p y ( 敲声 = 沉闷 ) ] = 0.7219 − [ 2 5 × ( − ( 1 2 log ⁡ 1 2 + 1 2 log ⁡ 1 2 ) ) + 3 5 × ( − ( 0 3 log ⁡ 0 3 + 3 3 log ⁡ 3 3 ) ) ] = 0.3219 G a i n ( D 纹理 = 稍糊 , 脐部 ) = 0.7219 − [ 3 5 × E n t r o p y ( 脐部 = 稍凹 ) + 2 5 × E n t r o p y ( 脐部 = 凹陷 ) ] = 0.7219 − [ 3 5 × ( − ( 1 3 log ⁡ 1 3 + 2 3 log ⁡ 2 3 ) ) + 2 5 × ( − ( 0 2 log ⁡ 0 2 + 2 2 log ⁡ 2 2 ) ) ] = 0.1709 G a i n ( D 纹理 = 稍糊 , 触感 ) = 0.7219 − [ 1 5 × E n t r o p y ( 触感 = 软粘 ) + 4 5 × E n t r o p y ( 触感 = 硬滑 ) ] = 0.7219 − [ 1 5 × ( − ( 1 1 log ⁡ 1 1 + 0 1 log ⁡ 0 1 ) ) + 4 5 × ( − ( 0 4 log ⁡ 0 4 + 4 4 log ⁡ 4 4 ) ) ] = 0.7219 \begin{aligned} Gain(D^{纹理=稍糊},色泽)&=0.7219-[\frac{4}{5}\times Entropy(色泽=青绿)+\frac{4}{5}\times Entropy(色泽=乌黑)+\frac{1}{5}\times Entropy(色泽=浅白)]\\ &=0.7219-[\frac{2}{5}\times(-(\frac{0}{2}\log\frac{0}{2}+\frac{2}{2}\log\frac{2}{2}))+\frac{2}{5}\times(-(\frac{1}{2}\log\frac{1}{2}+\frac{1}{2}\log\frac{1}{2}))+\frac{1}{5}\times(-(\frac{0}{1}\log\frac{0}{1}+\frac{1}{1}\log\frac{1}{1}))]\\ &=0.3219\\ Gain(D^{纹理=稍糊},根蒂)&=0.7219-[\frac{4}{5}\times Entropy(根蒂=稍蜷)+\frac{1}{5}\times Entropy(根蒂=蜷缩)]\\ &=0.7219-[\frac{4}{5}\times(-(\frac{1}{4}\log\frac{1}{4}+\frac{3}{4}\log\frac{3}{4}))+\frac{1}{5}\times(-(\frac{0}{1}\log\frac{0}{1}+\frac{1}{1}\log\frac{1}{1}))]\\ &=0.0728\\ Gain(D^{纹理=稍糊},敲声)&=0.7219-[\frac{2}{3}\times Entropy(敲声=浊响)+\frac{3}{5}\times Entropy(敲声=沉闷)]\\ &=0.7219-[\frac{2}{5}\times(-(\frac{1}{2}\log\frac{1}{2}+\frac{1}{2}\log\frac{1}{2}))+\frac{3}{5}\times(-(\frac{0}{3}\log\frac{0}{3}+\frac{3}{3}\log\frac{3}{3}))]\\ &=0.3219\\ Gain(D^{纹理=稍糊},脐部)&=0.7219-[\frac{3}{5}\times Entropy(脐部=稍凹)+\frac{2}{5}\times Entropy(脐部=凹陷)]\\ &=0.7219-[\frac{3}{5}\times(-(\frac{1}{3}\log\frac{1}{3}+\frac{2}{3}\log\frac{2}{3}))+\frac{2}{5}\times(-(\frac{0}{2}\log\frac{0}{2}+\frac{2}{2}\log\frac{2}{2}))]\\ &=0.1709\\ Gain(D^{纹理=稍糊},触感)&=0.7219-[\frac{1}{5}\times Entropy(触感=软粘)+\frac{4}{5}\times Entropy(触感=硬滑)]\\ &=0.7219-[\frac{1}{5}\times(-(\frac{1}{1}\log\frac{1}{1}+\frac{0}{1}\log\frac{0}{1}))+\frac{4}{5}\times(-(\frac{0}{4}\log\frac{0}{4}+\frac{4}{4}\log\frac{4}{4}))]\\ &=0.7219\\ \end{aligned} Gain(D纹理=稍糊,色泽)Gain(D纹理=稍糊,根蒂)Gain(D纹理=稍糊,敲声)Gain(D纹理=稍糊,脐部)Gain(D纹理=稍糊,触感)=0.7219[54×Entropy(色泽=青绿)+54×Entropy(色泽=乌黑)+51×Entropy(色泽=浅白)]=0.7219[52×((20log20+22log22))+52×((21log21+21log21))+51×((10log10+11log11))]=0.3219=0.7219[54×Entropy(根蒂=稍蜷)+51×Entropy(根蒂=蜷缩)]=0.7219[54×((41log41+43log43))+51×((10log10+11log11))]=0.0728=0.7219[32×Entropy(敲声=浊响)+53×Entropy(敲声=沉闷)]=0.7219[52×((21log21+21log21))+53×((30log30+33log33))]=0.3219=0.7219[53×Entropy(脐部=稍凹)+52×Entropy(脐部=凹陷)]=0.7219[53×((31log31+32log32))+52×((20log20+22log22))]=0.1709=0.7219[51×Entropy(触感=软粘)+54×Entropy(触感=硬滑)]=0.7219[51×((11log11+10log10))+54×((40log40+44log44))]=0.7219
"触感"属性的信息增益达到最大,选择"触感"属性继续分裂。

表4 西瓜数据集——纹理=模糊
编号色泽根蒂敲声纹理脐部触感好瓜
11浅白硬挺清脆模糊平坦硬滑
12浅白蜷缩浊响模糊平坦软粘
16浅白蜷缩浊响模糊平坦硬滑

当前节点包含的样本全属于同一类别,即差瓜,因此无需再分。

相关文章:

机器学习之决策树(DecisionTree)

决策树中选择哪一个特征进行分裂,称之为特征选择。 特征选择是找出某一个特征使得分裂后两边的样本都有最好的“归宿”,即左边分支的样本属于一个类别、右边分支的样本属于另外一个类别,左边和右边分支包含的样本尽可能分属同一类别&#xff…...

Qt Desiogn生成的ui文件转化为h文件

1.找到这个工具 2.查找到ui文件以及要转化为的h文件的路径。 3.在1中的工具输入uic /xx/xxx.ui -o /xx/xxx.h即可得到结果。...

python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)边缘检测

OpenCV中边缘检测四种常用算子: (1)Sobel算子 Sobel算子是一种基于梯度的边缘检测算法。它通过对图像进行卷积操作来计算图像的梯度,并将梯度的大小作为边缘的强度。它使用两个3x3的卷积核,分别用于计…...

【论文阅读】VCD-FL: Verifiable, collusion-resistant, and dynamic federated learning

VCD-FL: Verifiable, collusion-resistant, and dynamic federated learning -- VCD-FL:可验证可抵抗共谋攻击的动态联邦学习 来源背景介绍相关工作本文贡献预备知识 系统模型威胁模型具体实现初始化本地训练梯度加密承诺生成插值优化 密文聚合聚合结果验证梯度解密结果验证恶意…...

浙江安吉成新照明电器:Acrel-1000DP 分布式光伏监控系统应用探索

安科瑞吕梦怡 18706162527 摘 要:分布式光伏发电站是指将光伏发电组件安装在用户的建筑物屋顶、空地或其他适合的场地上,利用太阳能进行发电的一种可再生能源利用方式,与传统的大型集中式光伏电站相比,分布式光伏发电具有更灵活…...

记一次数据库连接 bug

整个的报错如下: com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: Could not create connection to database server. Attempted reconnect 3 times. Giving up. at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Metho…...

STM32 FreeRTOS 信号量

信号量的简介 reeRTOS中的信号量是一种用于任务间同步和资源管理的机制。信号量可以是二进制的(只能取0或1)也可以是计数型的(可以是任意正整数)。信号量的基本操作包括“获取”和“释放”。 比如动车上的卫生间,一个…...

计算机网络 | 什么是公网、私网、NAT?

关注:CodingTechWork 引言 计算机网络是现代信息社会的基石,而网络通信的顺畅性和安全性依赖于有效的IP地址管理和网络转换机制。在网络中,IP地址起到了标识设备和进行数据传输的核心作用。本文将详细讨论公网IP、私网IP以及NAT转换等网络技…...

学技术学英文:通过jmeter命令行工具生成聚合报告文件到csv文件

单词 汉语意思 音标 aggregate 聚合 /ˈɡrɪɡeɪt/ command-line 命令行 /kəˈmnd laɪn/ distribution 分布 /ˌdɪstrɪˈbjuːʃn/ extractor 提取器 /ɪkˈstrktər/ granulation 细分 /ˌɡrnjuˈleɪʃn/ jmeter JMeter(软件&#xff0…...

数据库开发支持服务

文章目录 前言适用产品服务范围前提条件责任矩阵交互项目 服务流程交付件项目完成标志 前言 数据库开发支持服务是为了达成客户业务系统开发、测试、上线运行提供的具体技术支撑,内容包括数据库开发指导、性能调优、第三方平台对接支持、应用对接与上线支持等。数据…...

【SQL 中的分组查询与联合查询详解】

文章目录 SQL 中的分组查询与联合查询详解1. GROUP BY分组查询1.1 语句格式1.2 示例说明1.2.1 分别查询哥哥组和弟弟组的英语成绩总和1.2.2 查询哥哥组的所有成绩总和 2. 联合查询2.1 内连接2.1.1 语法格式2.1.2 执行过程 2.2 外连接2.2.1 左外连接2.2.2 右外连接 2.3 自连接2.…...

如何提高自动化测试覆盖率和效率

用ChatGPT做软件测试 在现代软件开发中,自动化测试已经成为保证软件质量的重要手段。然而,在实践中,自动化测试的覆盖率和效率常常受到限制,导致潜在缺陷未能及时发现或测试资源浪费。因此,提升自动化测试的覆盖率和效…...

Vue3 nginx 打包后遇到的问题

前端vite文件配置 export default defineConfig({plugins: [vue(),DefineOptions()],base:./,resolve:{alias:{:/src, //配置指向src目录components:/src/components,views:/src/views}},server:{// host:0.0.0.0,// port:7000,proxy:{/api:{target:xxx, // 目标服务器地址 &am…...

【PCIe 总线及设备入门学习专栏 5.3.2 -- PCIe 枚举与 PCIe PHY firmware 的区别与联系】

文章目录 OverviewPCIe 枚举与PCIe PHY固件的区别与联系1. PCIe 枚举2. PCIe PHY固件3. 区别4. 联系 举例说明实例场景 1:服务器启动 PCIe 网卡的过程实例场景 2:PCIe 热插拔设备的调试 Overview 本文将详细介绍 PCIe 枚举与 PCIe PHY firmware 的区别与…...

电动汽车超级充电设备与车辆之间的通讯协议对27930-2015国标的修改记录

左侧为团体标准 右侧为国标 1.CHM SPN 2600 数据修改为 团标数据: 0x534331 ,国标数据:0x000101 2.BRM SPN 2565 数据修改为 团标数据: 0x53…...

案例分析一

张某(10多年IT工作经验)应聘一家国企单位,面试官(技术副主管)面试时问了些无关痛痒的问题,谈到薪资时强调我权限范围内的数额就那么多,再多就需要走申请流程进行操作了。 没几天入职后&#xf…...

2.5G PoE交换机 TL-SE2109P 简单开箱评测,8个2.5G电口+1个10G光口(SFP+)

TPLINK(普联)的万兆上联的2.5G网管交换机TL-SE2109P简单开箱测评。8个PoE 2.5G电口,1个万兆SFP上联口。 2.5G交换机 TL-SE2420 简单开箱评测,16个2.5G电口4个10G光口(SFP):https://blog.zeruns.com/archives/837.html…...

mysql存电话号码应该用int还是string类型

在MySQL中,存储电话号码一般建议使用**STRING 类型**(通常是 VARCHAR),而不是 INT 类型,原因如下: 1. 电话号码不是数字用于计算的值 电话号码本质上是一个标识符,不需要进行数学运算。如果用…...

解决本地运行MR程序访问权限问题

文章目录 1. 提出问题2. 解决问题2.1 临时解决方案2.2 永久解决方案 3. 小结 1. 提出问题 运行DeduplicateIPsDriver类,抛出如下异常: 该错误信息表明在尝试运行 DeduplicateIPsDriver 类时,遇到了 HDFS(Hadoop 分布式文件系统&a…...

Codeforces Round 997 (Div. 2) A~C

今天的封面是水母猫猫和佩佩,原图在这里,记得关注画师夏狩大大 至此,天鹅完成了连续四场比赛在四个不同比赛上四次分的壮举!(ABC388,CodeChef169,牛客月赛109,CF997) 这场…...

3. Go函数概念

在 Go 语言中,函数被称为一等公民(First-Class Citizens),意味着函数可以像其他数据类型(如整数、字符串、结构体等)一样作为变量传递、返回、赋值等。这使得 Go 在编程时具备了极大的灵活性。 1、函数概念…...

python-44-嵌入式数据库SQLite和DuckDB

文章目录 1 SQLite1.1 世界上最流行的数据库1.1 SQLite简介1.2 插入语句1.3 查询数据1.4 更新数据1.5 删除数据2 DuckDB2.1 DuckDB简介2.2 DuckDB与Python结合使用2.2.1 创建表2.2.2 分析语句2.2.3 导出为parquet文件2.3 Windows中使用DuckDB3 参考附录1 SQLite Python的一个特…...

使用 Java 和 FreeMarker 实现自动生成供货清单,动态生成 Word 文档,简化文档处理流程。

在上一篇博客中主要是使用SpringBootApache POI实现了BOM物料清单Excel表格导出,详见以下博客: Spring Boot Apache POI 实现 Exc()el 导出:BOM物料清单生成器(支持中文文件名、样式美化、数据合并&#…...

R语言的并发编程

R语言的并发编程 引言 在现代计算中,如何有效地利用计算资源进行数据处理和分析已成为一个重要的研究方向。尤其在大数据时代,数据量的急剧增加让单线程处理方式显得力不从心。为了解决这一问题,各种编程语言都开展了并发编程的研究和应用。…...

音乐播放器实现:前端HTML,CSS,JavaScript综合大项目

音乐播放器实现:前端HTML,CSS,JavaScript综合大项目 项目概述项目视图效果一、侧边栏相关代码(一)HTML代码(二)css代码 二、登录页面(一)HTML代码(二)css代码…...

PixArt--alpha笔记

PixArt-α 是华为发布的文生图模型。 训练策略分解:设计三个不同训练步骤,分别优化像素依赖、文本图像对齐和图像审美质量。高效T2I transformer:将 cross-attention融入 Diffusion Transformer (DiT)注入文本条件,简化计算密集的…...

内网渗透测试工具及渗透测试安全审计方法总结

1. 内网安全检查/渗透介绍 1.1 攻击思路 有2种思路: 攻击外网服务器,获取外网服务器的权限,接着利用入侵成功的外网服务器作为跳板,攻击内网其他服务器,最后获得敏感数据,并将数据传递到攻击者&#xff0…...

java工程学习步骤

1、安装idea,安装maven,mysql数据库 2、创建一个多maven的springboot的项目,可以正常启动以及可以访问web页面 3、引入日志使用slflogbck进行日志打印,同时封装统一的日志打印工具,idea安装maven analyzer工具&#…...

使用Flask和Pydantic实现参数验证

使用Flask和Pydantic实现参数验证 1 简介 Pydantic是一个用于数据验证和解析的 Python 库,版本2的性能有较大提升,很多框架使用Pydantic做数据校验。 # 官方参考文档 https://docs.pydantic.dev/latest/# Github地址 https://github.com/pydantic/pyd…...

LabVIEW 蔬菜精密播种监测系统

在当前蔬菜播种工作中,存在着诸多问题。一方面,播种精度难以达到现代农业的高标准要求,导致种子分布不均,影响作物的生长发育和最终产量;另一方面,对于小粒径种子,传统的监测手段难以实现有效监…...

统信UOS系统安装redis

1、yum引入redis yum install redis2、创建日志文件夹 mkdir -p /var/log/redis mkdir -p /var/lib/redis3、添加用户 useradd redis -s /usr/sbin/nologin4、文件夹赋权限 chown -R redis:root /var/log/redis chown redis:root /etc/redis.conf chown -R redis:root /var…...

课程如何抵御脑腐的冲击

课程需要引导学生逐步形成深度思考的能力,才有可能抵御‘Brain Rot’,否则都不会取得任何改善。 一步步失去的思维力,需要一步步引导恢复,类似康复训练。这是一个非常长期而艰辛但又十分有意义和有价值的工作。 这是一篇类似工作转…...

2.4 如何学习表示学习(Representation Learning)

如何学习表示学习(Representation Learning) 学习表示学习(Representation Learning)是理解和掌握机器学习、深度学习以及人工智能的关键一步。表示学习主要关注从原始数据中提取有效的特征或表示,使得模型能够高效处理和理解复杂的数据。以下是一些系统的方法,帮助你一…...

介绍下常用的前端框架及时优缺点

以下是一些常用的前端框架及其优缺点介绍: React • 优点 • 组件化架构:可构建可复用的UI组件,提高开发效率和组件可维护性。 • 虚拟DOM:高效更新页面,减少直接操作DOM的性能开销。 • 灵活性和可扩展性&#xf…...

Rust 猜数字游戏:从 0 到 1 的完整实现与深入解析

一、项目概述 1.1 为什么选择“猜数字”? “猜数字”是编程入门中非常经典的一个项目。它看似简单,却能很好地展示: 输入输出 (I/O):提示用户输入并读取内容。随机数:每次运行生成一个随机值,保证游戏的…...

使用C语言实现栈的插入、删除和排序操作

栈是一种后进先出(LIFO, Last In First Out)的数据结构,这意味着最后插入的元素最先被删除。在C语言中,我们可以通过数组或链表来实现栈。本文将使用数组来实现一个简单的栈,并提供插入(push)、删除(pop)以及排序(这里采用一种简单的排序方法,例如冒泡排序)的操作示…...

职场的三个阶段及其应对规划:以前端开发工程师为例

作为职场人士,特别是 IT 开发工程师,职业生涯的发展路径往往伴随着不同的挑战与机遇。一般而言,职场生涯可以划分为三个阶段:找工作阶段、有工作阶段以及职业转型阶段。每个阶段都有其特定的特征和应对策略,下面我将从…...

【人工智能】:搭建本地AI服务——Ollama、LobeChat和Go语言的全方位实践指南

前言 随着自然语言处理(NLP)技术的快速发展,越来越多的企业和个人开发者寻求在本地环境中运行大型语言模型(LLM),以确保数据隐私和提高响应速度。Ollama 作为一个强大的本地运行框架,支持多种先…...

蓝桥杯训练—斐波那契数列

文章目录 一、题目二、解析三、代码 一、题目 求100以内的斐波那契数列 斐波那契数列(Fibonacci sequence),又称黄金分割数列 ,因数学家莱昂纳多斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入&…...

TensorFlow DAY3: 高阶 API(Keras,Estimator)(完)

TensorFlow 作为深度学习框架,当然是为了帮助我们更便捷地构建神经网络。所以,本次实验将会了解如何使用 TensorFlow 来构建神经网络,并学会 TensorFlow 构建神经网络的重要函数和方法。 知识点 Keras 顺序模型Keras 函数模型Keras 模型存储…...

复健第二天之[MoeCTF 2022]baby_file

打开题目在线环境可以看到: 感觉要用伪协议去求,但是我们并不知道flag的位置,这里我选择用dirsearch去扫一下: 最像的应该就是flag.php了 于是就构建payload: **?filephp://filter/convert.base64-encode/resource…...

【QT用户登录与界面跳转】

【QT用户登录与界面跳转】 1.前言2. 项目设置3.设计登录界面3.1 login.pro参数3.2 界面设置3.2.1 登录界面3.2.2 串口主界面 4. 实现登录逻辑5.串口界面6.测试功能7.总结 1.前言 在Qt应用程序开发中,实现用户登录及界面跳转功能是构建交互式应用的重要步骤之一。下…...

【docker踩坑记录】

docker踩坑记录 踩坑记录(持续更新中.......)docker images 权限问题 踩坑记录(持续更新中…) docker images 权限问题 permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Head "http://%2Fvar%2Frun%2Fdocker.s…...

【Azure 架构师学习笔记】- Azure Function (2) --实操1

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Function 】系列。 接上文【Azure 架构师学习笔记】- Azure Function (1) --环境搭建和背景介绍 前言 上一文介绍了环境搭建,接下来就在本地环境下使用一下。 环境准备 这里我下载了最新的VS studio&…...

豆包MarsCode:构造特定数组的逆序拼接

问题描述 思路分析 1. 数组的组成: 我们要根据 i 的不同值拼接出不同长度的子数组。对于每个 i 从 1 到 n,我们要把数字从 n 逆序到 i 拼接成一个子数组。 例如,当 i 1 时,拼接 [n, n-1, ..., 1]。当 i 2 时,拼接 …...

14-美妆数据分析

前言 美妆数据分析可以帮助企业更好地理解市场趋势、客户偏好和产品表现 import pandas as pd import numpy as np 一、数据清洗 data pd.read_csv(rC:\Users\B\Desktop\美妆数据.csv,encodinggbk) data.head()data.info()data data.drop_duplicates(inplaceFalse) data.r…...

新阿里云买服务器配置需手动配置80端口

新买阿里云服务器需手动配置80,端口才可以访问nginx CentOS系统 安装nginx 1. 安装 Nginx yum install nginx 2. 启动 Nginx 服务 systemctl start nginx 3. 修改默认网页 cd /usr/share/nginx/ echo "666" >index.html cat index.html 访问ngin最后…...

Mysql--实战篇--连接泄漏问题(什么是连接泄漏,未关闭SqlSession,长事务处理,连接池管理等)

1、什么是连接泄漏(Connection Leak)? 连接泄漏是指应用程序未能正确关闭数据库连接,导致连接池中的可用连接逐渐减少,最终耗尽所有连接。连接泄漏可能会导致新的请求无法获得连接,进而引发服务中断。 连…...

【ESP32】ESP-IDF开发 | WiFi开发 | AP模式 + 基站连接例程

1. 简介 前面一篇讲了WiFi的基站模式,演示了怎么编程连接AP,所以这一篇讲一讲AP模式,ESP32作AP,让其他的设备连接自己。 1.1 DHCP 这里需要补充一个知识点——DHCP服务器。当基站连接一个AP时,会被分配一个IP&#xf…...

Ubuntu升级Linux内核教程

本文作者CVE-柠檬i: CVE-柠檬i-CSDN博客 本文使用的方法是dpkg安装,目前版本为5.4.0-204,要升级成5.8.5版本 下载 下载网站:https://kernel.ubuntu.com/mainline/ 在该网站下载deb包,选择自己想要升级的版本,这里是5…...