MySQL(高级特性篇) 06 章——索引的数据结构
一、为什么使用索引
- 索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教科书的目录部分,通过目录找到对应文章的页码,便可快速定位到需要的文章。MySQL中也是一样的道理,进行数据查找时,首先查看查询条件是否命中某条索引,符合则通过索引查找相关数据;如果不符合则需要全表扫描,即需要一条一条地查找记录,直到找到与条件符合的记录
- 图示:
-
如上图所示,在数据库没有索引的情况下,数据分布在硬盘不同的位置上面,读取数据时,摆臂需要前后摆动查找数据,这样操作非常消耗时间。如果数据顺序摆放,那么也需要从1到6行按顺序读取,这样就相当于进行了6次IO操作,依旧非常耗时。如果不借助任何索引结构帮助快速定位数据的话,我们查找Col 2=89这条记录,就要逐行去查找、去比较。从Col 2= 34开始,进行比较,发现不是,继续下一行。我们当前的表只有不到10行数据,但如果表很大的话,有上千万条数据,就意味着要做很多很多次磁盘I/O才能找到。现在要查找Col 2=89这条记录。CPU必须先去磁盘查找这条记录,找到之后加载到内存,再对数据进行处理。这个过程最耗时间的就是磁盘I/O(涉及到磁盘的旋转时间(速度较快)、磁头的寻道时间(速度慢、费时))
-
假如给数据使用二叉树这样的数据结构进行存储,如下图所示:
-
对字段Col 2添加了索引,就相当于在硬盘上为Col 2维护了一个索引的数据结构,即这个二叉搜索树。二叉搜索树的每个结点存储的是<K,V>结构,key 是Col 2,value是该key所在行的文件指针〈地址)。比如:该二叉搜索树的根节点就是(34,0x07)。现在对Col 2添加了索引,这时再去查找Col 2=89这条记录的时候会先去查找该二叉搜索树(二叉树的遍历查找)。读34到内存,89>34;继续右侧数据,读89到内存,89 == 89;找到数据返回。找到之后就根据当前结点的value快速定位到要查找的记录对应的地址。可以发现,只需要查找两次就可以定位到记录的地址,查询速真就提高了(也就是说,我们本来是一条一条往下查询数据。现在给字段加了索引,就用索引(即数据结构)来查数据)
-
这就是我们为什么要建索引,目的就是为了减少磁盘I/O的次数,加快查询速率
二、索引及其优缺点
(1)索引概述
- MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构
- 索引的本质:索引是数据结构。可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。这些数据结构以某种方式指向数据,这样就可以在这些数据结构的基础上实现高级查找算法
- 索引是在存储引擎中实现的,因此每种存储引擎的索引不一定完全相同,并且每种存储引擎不一定支持所有索引类型。同时,存储引挚可以定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。有些存储引擎支持更多的索引数和更大的索引长度
(2)优点
- 减少磁盘的I/O次数
- 通过创建唯一索引,可以保证数据库表中每一行数据的唯一性
- 在实现数据的参考完整性方面,可以加速表和表之间的连接。换句话说,对于有依赖关系的子表和父表联合查询时,可以提高查询速度
- 在使用分组和排序子句进行数据查询时,可以显著减少查找中分组和排序的时间(因为索引是排好序的快速查找数据结构),降低了CPU的消耗
(3)缺点
- 创建索引和维护索引要耗费时间,并且随着数据量的增加。所耗费的时间也会增加
- 索引需要占磁盘空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,存储在磁盘上,如果有大量的索引,索引文件就可能比数据文件更快达到最大文件尺寸
- 虽然索引大大提高了查询速度,同时却会降低更新表的速度。当对表中的数据进行增加、删除和修改的时候,索引也要动态地维护,这样就降低了数据的维护速度(也就是说,表中的数据发生变化,索引也要进行维护)
- 提示:索引可以提高查询的速度,但是会影响插入记录的速度(因为插入记录,字段的索引也要进行维护)。这种情况下,最好的办法是(1)先删除表中的索引,(2)然后插入数据,(3)插入完成后再创建索引
三、InnoDB中索引的推演
(1)索引之前的查找
先来看一个精确匹配的例子:
SELECT [列名列表] FROM 表名 WHERE 列名 = xxx;
3.1.1在一个页中的查找
- 假设目前表中的记录比较少,所有的记录都可以被存放到一个页中,在查找记录的时候,可以根据搜索条件的不同,分为两种情况:
- 以主键为搜索条件:可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该值对应分组中的记录即可快速找到指定的记录
- 以其他列为搜索条件:因为在数据页中并没有对非主键列建立所谓的页目录,所以无法通过二分法快速定位相应的值。这种情况下只能从最小记录开始依次遍历单链表中的每条记录,然后对比每条记录是不是符合搜索条件。很显然,这种查找的效率是非常低的
3.1.2在很多页中查找
- 大部分情况下,我们表中存放的记录都是非常多的,需要好多的数据页来存储这些记录。在很多页中查找记录的话,可以分为两个步骤:
- 定位到记录所在的页
- 从所在的页内中查找对应的记录
- 在没有索引的情况下,不论是根据主键列或者其他列的值进行查找,由于并不能快速的定位到记录所在的页,所以只能从第一个页沿着双向链表一直往下找,在每一个页中根据上面的查找方式去查找指定的记录。因为要遍历所有的数据页,所以这种方式显然是超级耗时的。如果一个表有一亿条记录呢?此时索引应运而生
(2)设计索引
- 建一个表:
CREATE TABLE index_demo( c1 INT, c2 INT, c3 CHAR(1), PRIMARY KEY(c1) ) ROW_FORMAT = Compact;##ROW_FORMAT--行格式
- 这个新建的index_demo表中有2个INT类型的列,1个CHAR(1)类型的列,而且规定了c1列为主键,这个表使用Compact行格式来实际存储记录的。这里我们简化了index_demo表的行格式示意图:
- 我们只在示意图里展示记录的这几个部分:
- record_type:表示记录的类型,0表示普通记录,2表示最小记录,3表示最大记录,1暂时还没用过,下面将
- next_record:表示下一条地址相对于本条记录的地址偏移量,我们用箭头来表明下一条记录是谁
- 各个列的值:这里只记录在index_demo表中的三个列,分别是c1、c2和c3
- 其他信息:除了上述3种信息以外的所有信息,包括其他隐藏列的值以及记录的额外信息
- 将记录格式示意图的其他信息项暂时去掉并把它竖起来的效果就是这样:
- 把一些记录放到页里的示意图就是下面这个基本的数据页模型:
3.2.1一个简单的索引设计方案
- 我们在根据某个搜索条件查找一些记录时,为什么要遍历所有的数据页呢?因为各个页中的记录并没有规律,并不知道搜索条件匹配哪些页中的记录,所以不得不依次遍历所有的数据页。如果我们像快速定位到需要查找的记录在哪些数据页种该咋办?我们可以为快速定位记录所在的数据页建立一个目录,建这个目录必须完成下边这些事(该例索引建立在主键上):
- 下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值
- 假设:每个数据页最多能存放3条记录(实际上一个数据页非常大,可以存放下好多记录)。有了这个假设之后我们向index_demo表插入3条记录:
INSERT INTO index_demo VALUES (1,4,'u'),(3,9,'d'),(5,3,'y');
- 那么这些记录已经按照主键值的大小串联成一个单向链表了,如图所示:
- 从图中可以看出来, index_demo表中的3条记录都被插入到了编号为10的数据页中了。此时再来插入一条记录:
INSERT INTO index _demo VALUES(4,4,'a');
- 因为页10最多只能放3条记录,所以我们不得不再分配一个新页:
-
注意,新分配的数据页编号可能并不是连续的。它们只是通过维护着上一个页和下一个页的编号而建立了链表关系。另外,页10中的用户记录最大的主键值是5,而页28中有一条记录的主键值是4,因为5 > 4,所以这就不符合下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值的要求。所以在插入主键值为4的记录的时候需要伴随着一次记录移动,也就是把主键值为5的记录移动到页28中,然后再把主键值为4的记录插入到页10中,这个过程的示意图如下:
-
这个过程表明了在对页中的记录进行增删改操作的过程中,必须通过一些诸如记录移动的操作来始终保证这个状态一直成立:下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。这个过程称为页分裂
- 假设:每个数据页最多能存放3条记录(实际上一个数据页非常大,可以存放下好多记录)。有了这个假设之后我们向index_demo表插入3条记录:
- 给所有的页建立一个目录项
- 由于数据页的编号可能是不连续的,所以在向index_demo表中插入许多条记录后,可能是这样的效果:
- 因为这些16KB的页在物理存储上是不连续的,所以如果想从这么多页中根据主键值快速定位某些记录所在页,需要给它们做个目录,每个页对应一个目录项,每个目录项包括下边两个部分:
- 页的用户记录中最小的主键值,用key来表示
- 页号,用page_no表示
- 所以为上面几个页做好的目录就像这样子:
- 以页28为例,它对应目录项2,这个目录项中包含着该页的页号28以及该页中用户记录的最小主键值 5。只需要把几个目录项在物理存储器上连续存储(比如:数组),就可以实现根据主键值快速查找某条记录的功能了
- 比如:查找主键值为20的记录,具体查找过程分两步(1)先从目录项中根据二分法快速确定出主键值为20的记录在目录项3中(因为12<20<209),它对应的页是页9(2)再根据前边说的在页中查找记录的方式去页9中定位具体的记录
- 由于数据页的编号可能是不连续的,所以在向index_demo表中插入许多条记录后,可能是这样的效果:
3.2.2InnoDB中的索引方案
(1)迭代1次:目录项记录的页
- 上边称为一个简易的索引方案,是因为为了在根据主键值进行查找时使用二分法快速定位具体的目录项而假设所有目录项都可以在物理存储器上连续存放,但是这样做有几个问题:
- InnoDB是使用页来作为管理存储空间的基本单位,最多能保证16KB(页的大小)的连续存储空间,而随着表中记录数量的增多,需要非常大的连续的存储空间才能把所有的目录项都放下,这对记录数且非常多的表是不现实的
- 实际中时常会对记录进行增删,假设把页28中的记录都删除了,那意味着目录项2也就没有存在的必要了,这就需要把目录项2后的目录项都向前移动一下。这样牵一发而动全身的操作效率很差
-
所以,需要一种可以灵活管理所有目录项的方式。可以发现目录项其实长得跟用户记录差不多,只不过目录项中的两个列是主键和页号而已,为了和用户记录做一下区分,把这些用来表示目录项的记录称为目录项记录。那InnoDB怎么区分一条记录是普通的用户记录还是目录项记录呢?使用记录头信息里的record_type属性,它的各个取值代表的意思如下:
-
0:普通的用户记录
- 1:目录项记录
- 2:最小记录
- 3:最大记录
-
-
现在把上面使用到的目录项放到数据页中的样子就是这样:
-
从图中可以看出来,新分配了一个编号为30的页来专门存储目录项记录
-
目录项记录和普通的用户记录的不同点:
-
目录项记录的record_type值是1,而普通用户记录的record_type值是0
-
目录项记录只有主键值和页的编号两个列,而普通的用户记录的列是用户自己定义的,可能包含很多列 ,另外还有InnoDB自己添加的隐藏列
- 了解:记录头信息里还有一个叫min_rec_mask的属性,只有在存储目录项记录的页中的主键值最小的目录项记录的min_rec_mask值为1 ,其他别的记录的 min_rec_mask 值都是0
-
-
目录项记录和普通的用户记录的相同点:两者用的是一样的数据页,都会为主键值生成Page Directory(页目录),从而在按照主键值进行查找时可以使用二分法来加快查询速度
- 总结以下:也就是说,可以将多个记录分页,然后针对每个页建立目录项。可以把多个目录项看成一条一条的记录(即目录项记录)......
(2)迭代2次:多个目录项记录的页
- 虽然说目录项记录中只存储主键值和对应的页号,比用户记录需要的存储空间小多了,但是不论怎么说一个页只有16KB大小,能存放的目录项记录也是有限的,那如果表中的数据太多,以至于一个数据页不足以存放所有的目录项记录,如何处理呢?
- 这里假设一个存储目录项记录的页最多只能存储4条目录项记录,所以如果此时再向上图中插入一条主键值为320的用户记录的话,那就需要分配一个新的存储目录项记录的页:
- 从图中可以看出,插入一条主键值为320的用户记录之后需要两个新的数据页:(1)为存储该用户记录而新生成了页31 (2)因为原先存储目录项记录的页30的容量已满 (前边假设只能存储4条目录项记录),所以不得不需要一个新的页32来存放页31对应的目录项
- 现在因为存储目录项记录的页不止一个,所以如果想根据主键值查找一条用户记录大致需要3个步骤,以查找主键值为 20 的记录为例:
- 确定目录项记录页:我们现在的存储目录项记录的页有两个,即页30和页32,又因为页30表示的目录项的主键值的范围是 [1, 320),页32表示的目录项的主键值不小于 320 ,所以主键值为 20 的记录对应的目录项记录在页30中
- 通过目录项记录页:确定用户记录真实所在的页,在一个存储目录项记录的页中通过主键值定位一条目录项记录的方式说过了
- 在真实存储用户记录的页中定位到具体的记录
- 树的高度越低,IO次数越少!
(3)迭代3次:目录项记录页的页
-
问题来了,在这个查询步骤的第1步中需要定位存储目录项记录的页,但是这些页是不连续的,如果表中的数据非常多则会产生很多存储目录项记录的页,那怎么根据主键值快速定位一个存储目录项记录的页呢?那就为这些存储目录项记录的页再生成一个更高级的目录,就像是一个多级目录一样,大目录里嵌套小目录,小目录里才是实际的数据,所以现在各个页的示意图就是这样了:
-
如图,生成了一个存储更高级目录项的页33,这个页中的两条记录分别代表页30和页32,如果用户记录的主键值在 [1, 320) 之间,则到页30中查找更详细的目录项记录,如果主键值不小于320的话,就到页32中查找更详细的目录项记录
-
可以用下边这个图来描述它:
-
该数据结构称为B+树
(4)B+Tree
- 不论是存放用户记录的数据页,还是存放目录项记录的数据页,我们都把它们存放到B+树这个数据结构中了,所以我们也称这些数据页为节点。数据页中的记录是用单向链表连接的,数据页之间是用双向链表连接的。从图中可以看成,我们的实际用户记录其实都存放在B+树的最底层的节点上了,这些节点也称为叶子节点,其余用来存放目录项记录的节点称为非叶子节点或内节点,其中B+树最上边的那个节点也称为根节点
-
一个B+树的节点其实可以分成好多层,规定最下边的那层,也就是存放用户记录的那层为第 0 层,之后依次往上加。之前做了一个非常极端的假设:存放用户记录的页最多存放3条记录 ,存放目录项记录的页最多存放4条记录。其实真实环境中一个页存放的记录数量是非常大的,假设所有存放用户记录的叶子节点代表的数据页可以存放100条用户记录,所有存放目录项记录的内节点代表的数据页可以存放1000条目录项记录,那么:
-
如果B+树只有1层,也就是只有1个用于存放用户记录的节点,最多能存放100条记录
-
如果B+树有2层,最多能存放 1000×100=10,0000 条记录
-
如果B+树有3层,最多能存放 1000×1000×100=1,0000,0000 条记录
-
如果B+树有4层,最多能存放 1000×1000×1000×100=1000,0000,0000 条记录。相当多的记录!!!
-
-
也就是说,每层超过1页,就要对页创建目录项
-
表里能存放100000000000 条记录吗?所以一般情况下,用到的B+树都不会超过4层。那通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又因为在每个页面内有所谓的Page Directory (页目录),所以在页面内也可以通过二分法实现快速定位记录
(3)常见索引概念
索引按照物理实现方式,索引可以分为2种:聚簇(聚集)和非聚簇(非聚集)索引。也可以把非聚集索引称为二级索引或者辅助索引
3.3.1聚簇索引
- 聚簇索引并不是一种单独的索引类型,而是一种数据存储方式(所有的用户记录都存储在了叶子节点),也就是所谓的索引即数据,数据即索引
- 术语"聚簇"表示数据行和相邻的键值聚簇的存储在一起
- 特点:
- 使用记录主键值的大小进行记录和页的排序,这包括三个方面的含义:(1)页内的记录是按照主键的大小顺序排成一个单向链表(2)各个存放用户记录的页也是根据页中用户记录的主键大小顺序排成一个双向链表(3)存放目录项记录的页分为不同的层次,在同一层次中的页也是根据页中目录项记录的主键大小顺序排成一个双向链表
- B+树的叶子节点存储的是完整的用户记录:所谓完整的用户记录,就是指这个记录中存储了所有列的值(包括隐藏列)
- 我们把具有这两种特性的B+树称为聚簇索引,所有完整的用户记录都存放在这个聚簇索引的叶子节点处。这种聚簇索引并不需要我们在MySQL语句中显式地用Index语句去创建,InnoDB存储引擎会自动地为我们创建聚簇索引
- 优点:
- 数据访问更快 ,因为聚簇索引将索引和数据保存在同一个B+树中,因此从聚簇索引中获取数据比非聚簇索引更快
- 聚簇索引对于主键的排序查找和范围查找速度非常快
- 按照聚簇索引排列顺序,查询显示一定范围数据的时候,由于数据都是紧密相连,数据库不用从多个数据块中提取数据,所以节省了大量的IO操作
- 缺点:
- 插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于InnoDB表,一般都会定义一个自增的ID列为主键
- 更新主键的代价很高 ,因为将会导致被更新的行移动。因此,对于InnoDB表,一般定义主键为不可更新
- 二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据
- 限制:
- 对于MysQL数据库目前只有InnoDB数据引擎支持聚簇索引,而MylSAM并不支持聚簇索引
- 由于数据物理存储排序方式只能有一种,所以每个MySQL的表只能有一个聚簇索引。一般情况下就是该表的主键
- 如果没有定义主键,InnoDB会选择非空的唯一索引代替。如果没有这样的索引,InnoDB会隐式的定义一个主键来作为聚簇索引
- 为了充分利用聚簇索引的聚簇的特性,所以InnoDB表的主键列尽量选用有序的顺序id,而不建议用无序的id,比如UUID、MD5、HASH、字符串列作为主键无法保证数据的顺序增长
3.3.2二级索引(辅助索引、非聚簇索引)
- 上边介绍的聚簇索引只能在搜索条件是主键值时才能发挥作用,因为B+树中的数据都是按照主键进行排序的。那如果想以别的列作为搜索条件该怎么办呢?肯定不能是从头到尾沿着链表依次遍历记录一遍
- 答案:可以多建几棵B+树,不同的B+树中的数据采用不同的排序规则。比方说用c2列的大小作为数据页、页中记录的排序规则,再建一棵B+树,效果如下图所示:
- 这个B+树与上边介绍的聚簇索引有几处不同:
- 使用记录c2列的大小进行记录和页的排序,这包括三个方面的含义:(1)
- 页内的记录是按照c2列的大小顺序排成一个单向链表(2)各个存放用户记录的页也是根据页中记录的c2列大小顺序排成一个双向链表(3)存放目录项记录的页分为不同的层次,在同一层次中的页也是根据页中目录项记录的c2列大小顺序排成一个双向链表
- B+树的叶子节点存储的并不是完整的用户记录,而只是c2列+主键这两个列的值
- 目录项记录中不再是主键+页号的搭配,而变成了c2列+页号的搭配
- 所以如果想通过c2列的值查找某些记录的话就可以使用刚刚建好的这个B+树了
- 以查找c2列的值为4的记录为例,查找过程如下:
- 确定目录项记录页:根据根页面,也就是页44,可以快速定位到目录项记录所在的页为页42(因为2<4<9)
- 通过目录项记录页确定用户记录真实所在的页:在页42中可以快速定位到实际存储用户记录的页,但是由于c2列并没有唯一性约束,所以c2列值为4的记录可能分布在多个数据页中,又因为2<4<=4,所以确定实际存储用户记录的页在页34和页35中
- 在真实存储用户记录的页中定位到具体的记录: 到页34和页35中定位到具体的记录
- 但是这个B+树的叶子节点中的记录只存储了c2和c1(也就是主键)两个列,所以必须再根据主键值去聚簇索引中再查找一遍完整的用户记录
- 概念:回表:根据这个以c2列大小排序的B+树只能确定要查找记录的主键值,所以如果想根据c2列的值查找到完整的用户记录的话,仍然需要到聚簇索引中再查一遍,这个过程称为回表 。也就是根据c2列的值查询一条完整的用户记录需要使用到2棵B+树!
- 问题:为什么我们还需要一次回表操作呢?直接把完整的用户记录放到叶子节点不OK吗?
- 回答:如果把完整的用户记录放到叶子节点是可以不用回表。但是太占地方了,相当于每建立一棵B+树都需要把所有的用户记录再都拷贝一遍,这就有点太浪费存储空间了
- 因为这种按照非主键列建立的B+树需要一次回表操作才可以定位到完整的用户记录,所以这种B+树也被称为二级索引(英文名secondary index ),或者辅动索引。由于使用的是c2列的大小作为B+树的排序规则,所以也称这个B+树是为c2列建立的索引
- 非聚簇索引的存在不影响数据在聚簇索引中的组织,所以一张表可以有多个非聚簇索引:
- 小结:聚簇索引与非聚簇索引的原理不同,在使用上也有一些区别:
- 聚簇索引的叶子节点存储的就是数据记录,非聚簇索引的叶子节点存储的是数据位置。非聚簇索引不会影响数据表的物理存储顺序
- 一个表只能有一个聚簇索引,因为只能有一种排序存储的方式,但可以有多个非聚簇索引,也就是多个索引目录提供数据检索
- 使用聚簇索引的时候,数据的查询效率高(不用回表),但如果对数据进行插入,删除,更新等操作,效率会比非聚簇索引低
3.3.3联合索引(属于非聚簇索引)
- 可以同时以多个列的大小作为排序规则,也就是同时为多个列建立索引,比方说想让B+树按
照c2和c3列的大小进行排序,这个包含两层含义:- 先把各个记录和页按照c2列进行排序
- 在记录的c2列相同的情况下,采用c3列进行排序
- 为c2和c3列建立的索引的示意图如下:
- 如图所示,需要注意以下几点:
- 每条目录项记录都由c2、c3、页号这三个部分组成,各条记录先按照c2列的值进行排序,如果记录的c2列相同,则按照c3列的值进行排序
- B+树叶子节点处的用户记录由c2、c3和主键c1列组成
- 注意一点,以c2和c3列的大小为排序规则建立的B+树称为联合索引 ,本质上也是一个二级索引。它的意思与分别为c2和c3列分别建立索引的表述是不同的,不同点如下:
- 建立联合索引只会建立如上图一样的1棵B+树
- 为c2和c3列分别建立索引会分别以c2和c3列的大小为排序规则建立2棵B+树
(4)InnoDB的B+树索引的注意事项
3.4.1根页面位置晚年不动
- 前边介绍B+树索引的时候,为了理解上的方便,先把存储用户记录的叶子节点都画出来,然后接着画存储目录项记录的内节点,实际上B+树的形成过程是这样的:
- 每当为某个表创建一个B+树索引(聚簇索引不是人为创建的,默认就有)的时候,都会为这个索引创建一个根节点页面。最开始表中没有数据的时候,每个B+树索引对应的根节点中既没有用户记录,也没有目录项记录
- 随后向表中插入用户记录时,先把用户记录存储到这个根节点中
-
当根节点中的可用空间用完时继续插入记录,此时会将根节点中的所有记录复制到一个新分配的页,比如页a中,然后对这个新页进行页分裂的操作,得到另一个新页,比如页b。这时新插入的记录根据键值(也就是聚簇索引中的主键值,二级索引中对应的索引列的值)的大小就会被分配到页a或者b中,而根节点便升级为存储目录项记录的页
- 总结:也就是说,最开始只创建了一个根节点页面,我们最开始往里添加用户记录的时候,也是往根节点页面中添加,等该根节点页面里放不下了,就会将根节点中的所有用户记录复制到一个新分配的页,比如页a中,然后对这个新页进行页分裂的操作,得到另一个新页,比如页b。然后此时,根节点页面里放的就是目录项记录了,等它里面放满目录项记录,又会将根节点中的所有目录项记录复制到一个新分配的页......
- 这个过程需要注意的是:一个B+树索引的根节点自诞生起,便不会再移动。这样只要对某个表建立一个索引,那么它的根节点的页号便会被记录到某个地方,然后凡是InnoDB存储引擎需要用到这个索引的时候,都会从那个固定的地方取出根节点的页号,从而来访问这个索引
3.4.2内节点中目录项记录的唯一性
- B+树索引的内节点中目录项记录的内容是索引列+页号的搭配,但是这个搭配对于二级索引来说有点不严谨。还拿index_dema表为例,假设这个表中的数据是这样的:
- 如果二级索引中目录项记录的内容只是索引列+页号的搭配的话,那么为c2列建立索引后的B+树应该长这样:
-
如果想新插入一行记录,其中c1、c2、c3的值分别是: 9、1、'c',那么在修改这个为c2列建立的二级索引对应的B+树时便碰到了个大问题:由于页3中存储的目录项记录是由c2列+页号的值构成的,页3中的两条目录项记录对应的c2列的值都是1,而新插入的这条记录的c2列的值也是1,那这条新插入的记录到底应该放到页4中,还是应该放到页5中啊?答案是:对不起,懵了
-
为了让新插入记录能找到自己在哪个页里,需要保证在B+树的同一层内节点的目录项记录除页号这个字段以外是唯一的。所以对于二级索引的内节点的目录项记录的内容实际上是由三个部分构成的:
-
索引列的值
-
主键号
-
页号
-
-
也就是把主键值也添加到二级索引内节点中的目录项记录了,这样就能保证B+树每一层节点中各条目录项记录除页号这个字段外是唯一的,所以为c2列建立二级索引后的示意图实际上应该是这样子的:
-
这样再插入记录(9,1,'c')时,由于页3中存储的目录项记录是由c2列+主键+页号的值构成的,可以先把新记录的c2列的值和页3中各目录项记录的c2列的值作比较,如果c2列的值相同的话,可以接着比较主键值,因为B+树同一层中不同目录项记录的c2列+主键的值肯定是不一样的,所以最后肯定能定位唯一的一条目录项记录,在本例中最后确定新记录应该被插入到页5中
3.4.3一个页面最少存储两条记录
-
一个B+树只需要很少的层级就可以轻松存储数亿条记录,查询速度相当不错!这是因为B+树本质上就是一个大的多层级目录,每经过一个目录时都会过滤掉许多无效的子目录,直到最后访问到存储真实数据的目录。那如果一个大的目录中只存放一个子目录是个啥效果呢?那就是目录层级非常非常非常多,而且最后的那个存放真实数据的目录中只能存放一条记录。费了半天劲只能存放一条真实的用户记录?所以InnoDB的一个数据页至少可以存放两条记录
四、MyISAM中的索引方案
B+树索引适用存储引擎如表所示:
索引/存储引擎 | MyISAM | InnoDB | Memory |
---|---|---|---|
B+Tree | 支持 | 支持 | 支持 |
即使多个存储引擎支持同一种类型的索引,但是它们的实现原理也是不同的。Innodb和MyISAM默认的索引是Btree索引;而Memory默认的索引是Hash索引
MyISAM引擎使用B+Tree作为索引结构,叶子节点的data域存放的是数据记录的地址
(1)MyISAM索引的原理
- 下图是MyISAM索引的原理图:
- 我们知道InnoDB中索引即数据,也就是聚簇索引的那棵B+树的叶子节点中已经把所有完整的用户记录都包含了,而MyISAM的索引方案虽然也使用树形结构,但是却将索引和数据分开存储:
- 将表中的记录按照记录的插入顺序单独存储在一个文件中,称之为数据文件(.MYD)。这个文件并不划分为若干个数据页,有多少记录就往这个文件中塞多少记录就成了。由于在插入数据的时候并没有刻意按照主键大小排序,所以并不能在这些数据上使用二分法进行查找
- 使用MyISAM存储引擎的表会把索引信息另外存储到一个称为索引文件(.MYI)的另一个文件中。MyISAM会单独为表的主键创建一个索引,只不过在索引的叶子节点中存储的不是完整的用户记录,而是主键值+数据记录地址的组合
-
这里设表一共有三列,假设以col1为主键,上图是一个MyISAM表的主索引(Primary key)示意。可以看出MylSAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主键索引和二级索引(Secondary key)在结构上没有任何区别,只是主键索引要求key是唯一的,而二级索引的key可以重复(需要注意的是,MylSAM中没有聚簇索引和非聚簇索引之说)。如果在Col2上建立一个二级索引,则此索引的结构如下图所示:
(2)MyISAM与InnoDB对比
- MyISAM的索引方式都是“非聚簇”的,与InnoDB包含1个聚簇索引是不同的。小结两种引擎中索引的区别:
- 在InnoDB存储引擎中,只需要根据主键值对聚簇索引进行一次查找就能找到对应的记录,而在MyISAM 中却需要进行一次回表操作(原因是没有聚簇索引),意味着MyISAM中建立的索引相当于全部都是二级索引
- InnoDB的数据文件本身就是索引文件,而MyISAM索引文件和数据文件是分离的 ,索引文件仅保存数据记录的地址
- InnoDB的非聚簇索引data域存储相应记录主键的值 ,而MyISAM索引记录的是地址。换句话说,InnoDB的所有非聚簇索引都引用主键作为data域
- MyISAM的回表操作是十分快速的,因为是拿着地址偏移量直接到文件中取数据的,反观InnoDB是通过获取主键之后再去聚簇索引里找记录,虽然说也不慢,但还是比不上直接用地址去访问
- InnoDB要求表必须有主键( MyISAM可以没有 )。如果没有显式指定,则MySQL系统会自动选择一个可以非空且唯一标识数据记录的列作为主键。如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型
- 小结:了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助。比如:
- 举例1:知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有二级索引都引用主键索引,过长的主键索引会令二级索引变得过大
- 举例2:用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一棵B+Tree,非单调的主键会造成在插入新记录时,数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择
五、索引的代价
索引是个好东西,可不能乱建,它在空间和时间上都会有消耗:
- 空间上的代价:每建立一个索引都要为它建立一棵B+树,每一棵B+树的每一个节点都是一个数据页,一个页默认会占用16KB的存储空间,一棵很大的B+树由许多数据页组成,那就是很大的一片存储空间
- 时间上的代价:每次对表中的数据进行增、删、改操作时,都需要去修改各个B+树索引。而且B+树每层节点都是按照索引列的值从小到大的顺序排序而组成了双向链表 。不论是叶子节点中的记录,还是内节点中的记录(也就是不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序而形成了一个单向链表。而增、删、改操作可能会对节点和记录的排序造成破坏,所以存储引擎需要额外的时间进行一些记录移位,页面分裂,页面回收等操作来维护好节点和记录的排序。如果我们建了许多索引,每个索引对应的B+树都要进行相关的维护操作,会给性能拖后腿
六、MySQL数据结构选择的合理性
从MysQL的角度讲,不得不考虑一个现实问题就是磁盘IO。如果能让索引的数据结构尽量减少硬盘的I/O操作,所消耗的时间也就越小。可以说,磁盘的I/0操作次数对索引的使用效率至关重要
查找都是索引操作,一般来说索引非常大,尤其是关系型数据库,当数据量比较大的时候,索引的大小有可能几个G甚至更多,为了减少索引在内存的占用,数据库索引是存储在外部磁盘上的。当利用索引查询的时候,不可能把整个索引全部加载到内存,只能逐一加载,那么MySQL衡量查询效率的标准就是IO磁盘次数
(1)全表遍历
(2)Hash结构
- Hash本身是一个函数,又被称为散列函数,它可以大幅提升检索数据的效率
- Hash算法是通过某种确定性的算法(比如MD5、SHA1、SHA2、SHA3)将输入转变为输出。相同的输入永远可以得到相同的输出,假设输入内容有微小偏差,在输出中通常会有不同的结果
- 举例:如果想要验证两个文件是否相同,那么不需要把两份文件直接拿来比对,只需要让对方把Hash函数计算得到的结果告诉你即可,然后在本地同样对文件进行Hash函数的运算,最后通过比较这两个Hash 函数的结果是否相同,就可以知道这两个文件是否相同
- 加速查找速度的数据结构。常见的有两类:
- 树,例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(log2N)
- 哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1)
- 采用Hash进行检索效率非常高,基本上一次检索就可以找到数据,而B+树需要自顶向下依次查找,多次访问节点才能找到数据,中间需要多次IO操作,从效率来说Hash比 B+树更快
- 在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h,根据关键字k计算出槽的位置。函数h将关键字域映射到哈希表T[o…m-1]的槽位上
- 上图中哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做碰撞,在数据库中一般采用链接法来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,如下图所示:
- Hash结构效率高,那为什么索引结构要设计成树型呢?
- 原因1:Hash索引仅能满足(=)(<>)和IN查询。如果进行范围查询,哈希型的索引,时间复杂度会退化为O(n);而树型的“有序"特性,依然能够保持O(log2N)的高效率
- 原因2:Hash索引还有一个缺陷,数据的存储是没有顺序的,在ORDER BY的情况下,使用Hash索引还需要对数据重新排序
- 原因3:对于联合索引的情况,Hash值是将联合索引键合并后一起来计算的,无法对单独的一个键或者几个索引键进行查询
- 原因4:对于等值查询来说,通常Hash索引的效率更高,不过也存在一种情况,就是素引列的重复值如果很多,效率就会降低。这是因为遇到 Hash冲突时,需要遍历桶中的行指针来进行比较,找到查询的关键字,非常耗时。所以,Hash索引通常不会用到重复值多的列上,比如列为性别、年龄的情况等
- Hash索引适用存储引擎如表所示:
索引/存储引擎 MyISAM InnoDB Memory HASH索引 不支持 不支持 支持 - Hash索引的适用性:
- Hash索引存在着很多限制,相比之下在数据库中B+树索引的使用面会更广,不过也有一些场景采用Hash索引效率更高,比如在键值型(Key-Value)数据库中,Redis 存储的核心就是Hash表
-
MysQL中的Memory存储引擎支持Hash存储,如果需要用到查询的临时表时,就可以选择Memory存储引擎,把某个字段设置为Hash索引,比如字符串类型的字段,进行Hash 计算之后长度可以缩短到几个字节。当字段的重复度低,而且经常需要进行等值查询的时候,采用Hash索引是个不错的选择
-
另外,InnoDB本身不支持Hash索引,但是提供自适应Hash索引(Adaptive Hash Index)。什么情况下才会使用自适应Hash索引呢?
-
如果某个数据经常被访问,当满足一定条件的时候,就会将这个数据页的地址存放到Hash表中。这样下次查询的时候,就可以直接找到这个页面的所在位置。这样让B+树也具备了Hash索引的优点
- 采用自适应Hash索引目的是方便根据 SQL 的查询条件加速定位到叶子节点,特别是当B+ 树比较深的时候,通过自适应Hash索引可以明显提高数据的检索效率
- 可以通过innodb_adaptive_hash_index变量来查看是否开启了自适应 Hash,比如:
(3)二叉搜索树
- 如果利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的
- 二叉搜索树的特点:
- 一个节点只能有两个子节点,也就是一个节点的度不能超过2
- 左子节点<本节点、右子节点>=本节点,比我大的向右,比我小的向左
- 查找规则:先来看下最基础的二叉搜索树(Binary Search Tree),搜索某个节点和插入节点的规则一样,假设搜索插入的数值为key:
- 如果key大于根节点,则在右子树中进行查找
- 如果key小于根节点,则在左子树中进行查找
- 如果key等于根节点,也就是找到了这个节点,返回根节点即可
- 举个例子,对数列(34,22,89,5,23,77,91)创造出来的二分查找树如下图所示:
- 但是存在特殊的情况,就是有时候二叉树的深度非常大。比如给出的数据顺序是(5,22,23,34,77,89,91),创造出来的二分搜索树如下图所示:
- 上面第二棵树也属于二分查找树,但是性能上已经退化成了一条链表,查找数据的时间复杂度变成了0(n)。可以看出来第一个树的深度是3,也就是说最多只需3次比较,就可以找到节点,而第二个树的深度是7,最多需要7次比较才能找到节点
- 为了提高查询效率,就需要减少磁盘IO数。为了减少磁盘IO的次数,就需要尽量降低树的高度,需要把原来"瘦高"“的树结构变的“矮胖”,树的每层的分叉越多越好
(4)AVL树
- 为了解决上面二叉查找树退化成链表的问题,人们提出了平衡二叉搜索树(Balanced Binary Tree),又称为AVL树(有别于AVL算法),它在二叉搜索树的基础上增加了约束,具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
- 这里说一下,常见的平衡二叉树有很多种,包括了平衡二叉搜索树、红黑树、数堆、伸展树。平衡二叉搜索树是最早提出来的平衡二叉树,当提到平衡二叉树时一般指的就是平衡二叉搜索树。事实上,第一棵树就属于平衡二叉搜索树,搜索时间复杂度就是O(log2n)
- 数据查询的时间主要依赖于磁盘I/O的次数,如果我们采用二叉树的形式,即使通过平衡二叉搜索树进行了改进,树的深度也是o(log2n),当n比较大时,深度也是比较高的,比如下图的情况:
- 每访问一次节点就需要进行一次磁盘I/O操作,对于上面的树来说,最多需要进行5次I/O操作。虽然平衡二叉树的效率高,但是树的深度也同样高,这就意味着磁盘I/O操作次数多,会影响整体数据查询的效率
- 针对同样的数据,如果把二叉树改成M叉树(M>2)呢?当M=3时,同样的31个节点可以由下面的三叉树来进行存储:
- 可以看到此时树的高度降低了,当数据量N大的时候,以及树的分叉数M大的时候,M叉树的高度会远小于二叉树的高度(M>2)。所以,我们需要把树从"瘦高"变"矮胖”
(5)B-Tree
- B树的英文是Balance Tree,也就是多路平衡查找树。简写为B-Tree(注意横杠表示这两个单词连起来的意思,不是减号)。它的高度远小于平衡二叉树的高度
- B树的结构如下图所示:
-
B树作为多路平衡查找树,它的每一个节点最多可以包括M个子节点,M称为B树的阶。每个磁盘块中包括了关键字和子节点的指针。如果一个磁盘块中包括了x个关键字,那么指针数就是x+1。对于一个100阶的B树来说,如果有3层的话最多可以存储约100万的索引数据。对于大量的索引数据来说,采用B树的结构是非常适合合的,因为树的高度要远小于二叉树的高度
-
一个M阶的B树(M>2)有以下的特性:
-
根节点的儿子数的范围是[2,M]
-
每个中间节点包含k-1个关键字和k个孩子,孩子的数量=关键字的数量+1,k的取值范围为[ceil(M/2),M]
-
叶子节点包括k-1个关键字(叶子节点没有孩子),k的取值范围为[ceil(M/2),M]
-
假设中间节点节点的关键字为:Key[1],Key[2]… Key|k-1],且关键字按照升序排序,即Key[i]<Key[i+1]。此时k-1个关键字相当于划分了k个范围,也就是对应着k个指针,即为:P[1],P[2]…P[K],其中P[1]指向关键字小于Key[1]的子树,P[i]指向关键字属于(Key[i-1], Key[i])的子树,P[K]指向关键字大于Key[k-1]的子树。
-
所有叶子节点位于同一层
-
-
上面那张图所表示的B树就是一棵3阶的B树。可以看一下磁盘块2,里面的关键字为(8,12),它有3个孩子(3,5),(9,10)和(13,15),能看到(3,5)小于8,(9,10)在8和12之间,而(13,15)大于12,刚好符合刚才给出的特征
-
然后来看一下如何用B树进行查找。假设想要查找的关键字是9,那么步骤可以分为以下几步:
-
与根节点的关键字(17,35)进行比较,9小于17那么得到指针P1
-
按照指针P1找到磁盘块2,关键字为(8,12),因为9在8和12之间,所以得到指针P2
-
按照指针P2找到磁盘块6,关键字为(9,10),然后找到了关键字9
-
-
能看出来在B树的搜索过程中,比较的次数并不少,但如果把数据读取出来然后在内存中进行比较,这个时间就是可以忽略不计的。而读取磁盘块本身需要进行I/O操作,消耗的时间比在内存中进行比较所需要的时间要多,是数据查找用时的重要因素。B树相比于平衡二叉树来说磁盘I/O操作要少,在数据查询中比平衡二叉树效率要高。所以只要树的高度足够低,IO次数足够少。就可以提高查询性能
-
小结:
-
B树在插入和删除节点的时候如果导致树不平衡,就通过自动调整节点的位置来保持树的自平衡
-
关键字集合分布在整棵树中,即叶子节点和非叶子节点都存放数据。搜索有可能在非叶子节点结束
-
其搜索性能等价于在关键字全集内做一次二分查找
-
- 再举例:
(6)B+Tree
- B+树也是一种多路搜索树,基于B树做出了改进,主流的DBMS都支持B+树的索引方式,比如 MysQL。相比于B-Tree,B+Tree适合文件索引系统
- B+树和B树的差异:
- B+树有几个孩子节点就有几个关键字。也就是,孩子数量=关键字数。而在B树中,孩子数量=关键字数+1
- B+树中非叶子节点的关键字也会同时存在在叶子节点中,并且是在叶子节点中所有关键字的最大(或最小)
- B+树中非叶子节点仅用于索引,不保存数据,跟记录有关的信息都放在叶子节点中。而在B树中,非叶子节点既保存索引、也保存数据
- B+树中,所有关键字都在叶子节点出现,叶子节点构成一个有序链表,而且叶子节点本身按照关键字的大小从小到大顺序连接
- B+树相较于B树的优点:
- 首先,B+树查询效率更稳定。因为B+树每次只有访问到叶子节点才能找到对应的数据,而在B树中,非叶子节点也会存储数据,这样就会造成查询效率不稳定的情况,有时候访问到了非叶子节点就可以找到关键字,而有时点需要访问到叶子节点才能找到关键字
- 其次,B+树的查询效率更高。这是因为B树非叶子节点也要存储数据,B+树非叶子节点不用存储数据。对于相同大小的页,B+树存储的目录项更多,故通常情况下B+树比B树更矮胖(阶数更大,深度更低),查询所需要的磁盘I/O也会更少。同样的磁盘页大小,B+树可以存储更多的节点关键字
- 不仅是对单个关键字的查询上,在查询范围上,B+树的效率也比B树高。这是因为所有关键字都出现在B+树的叶子节点中,叶子节点之间会有指针,数据又是递增的,这使得范围查找可以通过指针连接查找。而在B树中则需要通过中序遍历才能完成查询范围的查找。效率要低很多
- 思考题1:为了减少IO,索引树会一次性加载吗?
- 数据库索引是存储在磁盘上的,如果数据量很大,必然导致索引的大小也会很大,超过几个G
- 当利用索引查询的时候,是不可能将全部几个G的索引都加载进内存的,我们能做的只能是:逐一加载每一个磁盘页,因为磁盘页对应着索引树的节点
- 思考题2:B+树的存储能力如何?为何说一般查找行记录,最多只需1~3次磁盘IO
-
InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为10的3次方。也就是说一个深度为3的B+Tree索引可以维护1000*1000*1000=10亿条记录。(这里假定一个数据页也存储1000条行记录数据了)
-
实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree 的高度一般都在2-4层。MysQL的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘1/O操作
-
- 思考题3:为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?
- B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当
- B+树的磁盘读写代价更低:B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了
- 思考题4:Hash索引与B+树索引的区别
- Hash索引不能进行范围查询,而B+树可以。这是因为Hash索引指向的数据是无序的,而B+树的叶子节点是个有序的链表
- Hash索引不支持联合索引的最左侧原则(即联合索引的部分索引无法使用),而B+树可以。对于联合索引来说,Hash索引在计算 Hash值的时候是将索引键合并后再一起计算 Hash值,所以不会针对每个索引单独计算Hash值。因此如果用到联合索引的一个或者几个索引时,联合索引无法被利用
-
Hash索引不支持ORDER BY排序,因为Hash索引指向的数据是无序的,因此无法起到排序优化的作用,而B+树索引数据是有序的,可以起到对该字段ORDER BY排序优化的作用。同理,我们也无法用Hash索引进行模糊查询,而B+树使用LIKE进行模糊查询的时候,LIKE后面后模糊查询(比如%结尾)的话就可以起到优化作用
-
InnoDB不支持哈希索引
- 思考题5:Hash 索引与 B+ 树索引是在建索引的时候手动指定的吗?
- 针对InnoDB和MyISAM存储引擎,都会默认采用B+树索引,无法使用Hash索引
- InnoDB提供的自适应Hash是不需要手动指定的
(7)R树
-
R-Tree在MySQL很少使用,仅支持geometry数据类型 ,支持该类型的存储引擎只有myisam、bdb、innodb、ndb、archive几种。举个R树在现实领域中能够解决的例子:查找20英里以内所有的餐厅。如果没有R树你会怎么解决?一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中,一个字段记录经度,另一个字段记录纬度。这样的话我们就需要遍历所有的餐厅获取其位置信息,然后计算是否满足要求。如果一个地区有100家餐厅的话,我们就要进行100次位置计算操作了,如果应用到谷歌、百度地图这种超大数据库中,这种方法便必定不可行了。R树就很好的解决了这种高维空间搜索问题
-
它把B树的思想很好的扩展到了多维空间,采用了B树分割空间的思想,并在添加、删除操作时采用合并、分解结点的方法,保证树的平衡性。因此,R树就是一棵用来 存储高维数据的平衡树 。相对于B-Tree,R-Tree的优势在于范围查找
-
表格:
索引/存储引擎 MyISAM InnoDB Memory R-Tree索引 支持 支持 不支持
(8)小结
- 使用索引可以帮助我们从海量的数据中快速定位想要查找的数据,不过索引也存在一些不足,比如占用存储空间、降低数据库写操作的性能等,如果有多个索引还会增加索引选择的时间。当我们使用索引时,需要平衡索引的利(提升查询效率)和弊(维护索引所需的代价)
- 在实际工作中,还需要基于需求和数据本身的分布情况来确定是否使用索引,尽管索引不是万能的,但数据量大的时候不使用素引是不可想象的,毕竟索引的本质。是帮助我们提升数据检索的效率
(9)算法的时间复杂度
- 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法
- 算法的时间复杂度总结:
该笔记根据尚硅谷的MySQL课程整理
相关文章:
MySQL(高级特性篇) 06 章——索引的数据结构
一、为什么使用索引 索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教科书的目录部分,通过目录找到对应文章的页码,便可快速定位到需要的文章。MySQL中也是一样的道理,进行数据查找时,首先查看查询条件…...
【FlutterDart】MVVM(Model-View-ViewModel)架构模式例子-http版本(30 /100)
动图更精彩 MVVM(Model-View-ViewModel) 特点 Model:负责数据管理和业务逻辑。 View:负责显示数据,通常是一个UI组件。 ViewModel:负责处理用户交互,更新Model,并将数据转换为View可…...
光谱相机的光谱分辨率可以达到多少?
多光谱相机 多光谱相机的光谱分辨率相对较低,波段数一般在 10 到 20 个左右,光谱分辨率通常在几十纳米到几百纳米之间,如常见的多光谱相机光谱分辨率为 100nm 左右。 高光谱相机 一般的高光谱相机光谱分辨率可达 2.5nm 到 10nm 左右&#x…...
.Net8 Avalonia跨平台UI框架——<vlc:VideoView>控件播放海康监控、摄像机视频(Windows / Linux)
一、UI效果 二、新建用户控件:VideoViewControl.axaml 需引用:VideoLAN.LibVLC.Windows包 Linux平台需安装:VLC 和 LibVLC (sudo apt-get update、sudo apt-get install vlc libvlccore-dev libvlc-dev) .axaml 代码 注…...
【论文阅读】基于空间相关性与Stacking集成学习的风电功率预测方法
文章目录 摘要0. 引言1. 空间相关性分析2. 风电功率预测模型2.1 Stacking 集成策略2.2 基学习器2.2.1 基于机器学习算法的基学习器2.2.2 基于神经网络的基学习器2.2.3 基于粒子群优化算法的超参数优化 2.3 元学习器2.4 基于空间相关性与Stacking集成学习的风电功率预测方法 3 算…...
什么是Spring Boot 应用开发?
一、引言 在当今的软件开发领域,Java 依然占据着重要的地位,而 Spring Boot 作为 Java 生态系统中极具影响力的框架,极大地简化了企业级应用的开发流程,提升了开发效率和应用的可维护性。它基于 Spring 框架构建,通过…...
选择saas 还是源码主要考虑
公司业务规模:小型企业可能会发现SaaS提供的即用型解决方案更符合其需求,而大型企业可能需要源码以实现更高的定制性和控制权。 公司技术专长:缺乏技术团队的企业可能会倾向于使用SaaS,而那些拥有强大IT部门的企业可能更适合管理…...
【JAVA 基础 第(19)课】Hashtable 类用法和注意细节,是Map接口的实现类
Map接口:存放的是具有映射关系的键值对,键映射到值,键必须是唯一的 Hashtable 类,Map接口的实现类,键和值都不能为nullHashtable 是同步的,是线程安全的 public class MapTest {public static void main(String[] arg…...
AI时代下 | 通义灵码冲刺备战求职季
AI时代下 | 通义灵码冲刺备战求职季 什么是通义灵码使用智能编程助手备战求职靠谱吗体验心得 AI时代下,备战求职季有了不一样的方法,使用通义灵码冲刺备战求职季,会有什么样的体验? 什么是通义灵码 在开始话题之前,首…...
如何将 session 共享存储到 redis 中
文章目录 一. 分布式 session 登录1.1 什么是分布式?1.2 Session 共享1.3 为什么服务器 A 登录后,请求发到服务器 B,不认识该用户?1.4 共享存储 二. Session 共享实现Redis三. 测试session共享四. cookie设置4.1 前端4.2 后端 一.…...
智能科技与共情能力加持,哈曼重新定义驾乘体验
2025年1月6日,拉斯维加斯,2025年国际消费电子展——想象一下,当您步入一辆汽车,它不仅能响应您的指令,更能理解您的需求、适应您的偏好,并为您创造一个独特且专属的交互环境。作为汽车科技领域的知名企业和…...
第4章 Kafka核心API——Kafka客户端操作
Kafka客户端操作 一. 客户端操作1. AdminClient API 一. 客户端操作 1. AdminClient API...
Debian 设定 tomcat 定时重启
目录 背景 过程记录 1、编辑sh文件,完成重启功能 2、设置sh的可执行权限 编辑 3、设置定时任务 背景 在Debian 12系统中,原本部署了两个tomcat,结果总是遇到CPU飙升到影响应用正常使用的程度,找了很久原因还是没有找到。 …...
mysql8.0 重要指标参数介绍
MySQL 8.0 引入了许多新的功能和优化,针对性能、可扩展性、可靠性以及安全性方面做出了显著改进。为了确保 MySQL 的高效运行,了解和配置 MySQL 的一些关键指标参数非常重要。以下是 MySQL 8.0 中的一些重要参数和指标,帮助你优化数据库性能。…...
SpringMVC (2)
目录 1. RequestMapping 注解介绍 2. RequestMapping 使用 3. RequestMapping与请求方式 3.1 RequestMapping 支持Get和Post类型的请求 3.2 RequestMapping 指定接收某种请求 3.3 GetMapping和PostMapping 4. 传参 4.1 通过查询字符串传参 4.2 在 Body 中传参 4.2.1 …...
【全面解析】深入解析 TCP/IP 协议:网络通信的基石
深入解析 TCP/IP 协议:网络通信的基石 导语 你是否曾好奇,现代互联网是如何实现全球设备之间的高速、稳定和可靠通信的?无论是浏览网页、发送电子邮件,还是进行视频通话,背后都离不开 TCP/IP 协议 的支撑。作为互联网…...
图数据库 | 19、高可用分布式设计(下)
相信大家对分布式系统设计与实现的复杂性已经有了一定的了解,本篇文章对分布式图数据库系统中最复杂的一类系统架构设计进行探索,即水平分布式图数据库系统(这个挑战也可以泛化为水平分布式图数据仓库、图湖泊、图中台或任何其他依赖图存储、…...
【2024年华为OD机试】 (C卷,200分)- 反射计数(Java JS PythonC/C++)
一、问题描述 题目解析 题目描述 给定一个包含 0 和 1 的二维矩阵,一个物体从给定的初始位置出发,在给定的速度下进行移动。遇到矩阵的边缘时会发生镜面反射。无论物体经过 0 还是 1,都不影响其速度。请计算并给出经过 t 时间单位后&#…...
【微服务】SpringCloud 1-9章
1从Boot和Cloud版本选型开始说起 1.1Springboot版本选择 1.1.1git源码地址 https://github.com/spring-projects/spring-boot/releases/ 1.1.2官网看Boot版本 1.1.3SpringBoot3.0崛起 https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Release-Notes …...
Jmeter进行http接口并发测试
目录: 1、Jmeter设置(1)设置请求并发数(2)设置请求地址以及参数(3)添加结果数 2、启动看结果 1、Jmeter设置 (1)设置请求并发数 (2)设置请求地址…...
JavaScript语言的数据结构
JavaScript中的数据结构 引言 在编程的世界里,数据结构是处理和组织数据的重要方式。数据结构的选择往往直接影响到程序的性能和可维护性。JavaScript作为一门广泛使用的编程语言,在数据结构的设计和使用上也有其独特的特点。本文将深入探讨JavaScript…...
【数据分享】1929-2024年全球站点的逐日平均气温数据(Shp\Excel\免费获取)
气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据!本次我们为大家带来的就是具体到气象监…...
DETRs with Collaborative Hybrid Assignments Training论文阅读与代码
关键词:协作混合分配训练 【目标检测】Co-DETR:ATSS+Faster RCNN+DETR协作的先进检测器(ICCV 2023)-CSDN博客 摘要: 在这篇论文中,作者观察到在DETR中将过少的 Query 分配为正样本,采用一对一的集合匹配,会导致对编码器输出的监督稀疏,严重损害编码器的区分特征学习…...
某国际大型超市电商销售数据分析和可视化
完整源码项目包获取→点击文章末尾名片! 本作品将从人、货、场三个维度,即客户维度、产品维度、区域维度(补充时间维度与其他维度)对某国际大型超市的销售情况进行数据分析和可视化报告展示,从而为该超市在弄清用户消费…...
码云gitee 新建仓库 添加公钥
码云gitee 新建仓库 添加公钥 文章目录 码云gitee 新建仓库 添加公钥新建仓库生成公钥管理个人公钥安全验证 码云这个网站是一个代码托管平台,在国内可以无限制的使用,在这个网站上,也可以搜索到一些github上面的内容。进入这个网站ÿ…...
SQL 基础教程 - SQL SELECT INTO 语句
通过 SQL,您可以从一个表复制信息到另一个表。 SELECT INTO 语句从一个表复制数据,然后把数据插入到另一个新表中。 SQL SELECT INTO 语句 SELECT INTO 语句从一个表复制数据,然后把数据插入到另一个新表中。 注意: MySQL 数据…...
《leetcode-runner》如何手搓一个debug调试器——指令系统
前文: 《leetcode-runner》如何手搓一个debug调试器——引言 《leetcode-runner》如何手搓一个debug调试器——架构 文章目录 什么是指令系统指令的组成部分leetcode-runner支持哪些指令如何解析用户输入的命令行指令识别流程 仓库地址:leetcode-runner …...
基于预共享密钥的IPsec实验
一、实验目的 (1)了解IPsec的原理和协议运行机制; (2)掌握IPsec身份认证的预共享密钥的配置; (3)掌握用Wireshark工具抓包分析IPsec数据包格式和协议流程。 二、实验设备与环境 &…...
Golang Gin系列-2:搭建Gin 框架环境
开始网络开发之旅通常是从选择合适的工具开始的。在这个全面的指南中,我们将引导你完成安装Go编程语言和Gin框架的过程,Gin框架是Go的轻量级和灵活的web框架。从设置Go工作空间到将Gin整合到项目中,本指南是高效而强大的web开发路线图。 安装…...
R语言绘图
多组火山图 数据准备: 将CSV文件同一在一个路径下,用代码合并 确保文件列名正确 library(fs) library(dplyr) library(tidyr) library(stringr) library(ggplot2) library(ggfun) library(ggrepel)# 获取文件列表 file_paths <- dir_ls(path &quo…...
Linux《Linux简介与环境的搭建》
在学习了C或者是C语言的基础知识之后就可以开始Linux的学习了,现在Linux无论是在服务器领域还是在桌面领域都被广泛的使用,所以Linxu也是我们学习编程的重要环节,在此接下来我们将会花大量的时间在Linxu的学习上。在学习Linux初期你可以会像初…...
.Net Core webapi 实现JWT认证
文章目录 需求准备创建JWT配置创建JWTService注册JWT创建中间件读取jwt的token在需要的接口上添加属性启动认证启动swagger的授权认证使用 需求 实现一个记录某个用户所有操作的功能 准备 创建你的webapi项目从nuget下载安装JWT资源包根据你的项目使用.net版本下载对应的jwt…...
SDL2:Android APP编译使用 -- SDL2多媒体库使用音频实例
SDL2:Android APP编译使用 3. SDL2:Android APP编译使用3.1 Android Studio环境准备:3.2 构建Android APP(1)方式一:快速构建APK工程(2)方式二:自定义APK工程(…...
gitignore忽略已经提交过的
已经在.gitignore文件中添加了过滤规则来忽略bin和obj等文件夹,但这些文件夹仍然出现在提交中,可能是因为这些文件夹在添加.gitignore规则之前已经被提交到Git仓库中了。要解决这个问题,您需要从Git的索引中移除这些文件夹,并确保…...
Visual Studio2019调试DLL
1、编写好DLL代码之后,对DLL项目的属性进行设置,选择待注入的DLL,如下图所示 2、生成DLL文件 3、将DLL设置为启动项目之后,按F5启动调试。弹出选择注入的exe的界面之后,使用代码注入器注入步骤2中生成的dllÿ…...
电力场景红外测温图像绝缘套管分割数据集labelme格式2436张1类别
数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):2436 标注数量(json文件个数):2436 标注类别数:1 标注类别名称:["arrester"] 每个类别标注的框数&am…...
RV1126+FFMPEG推流项目(7)AI音频模块编码流程
一、AI 模块和外设麦克风的关系 AI 模块是 RV1126 芯片的一个重要组成部分。它的主要功能是将外部接入的麦克风采集到的模拟信号通过内置的驱动程序转换为数字信号。这意味着麦克风作为外设,提供音频输入信号,AI 模块通过其硬件和软件的结合,…...
从零开始启动一个Vue项目
目录 一、首先下载Node.js 二、安装vue脚手架vue-cli 三、使用vue-ui创建一个vue项目 四、vue项目目录结构 五、启动vue项目 方法一:cmd窗口启动 方法二:软件中启动 一、首先下载Node.js 可以去看我的上一篇博客: NodeJs的安装及环境…...
存储过程和触发器
目录 1、存储过程 1.1 存储过程的概述 1.2 存储过程的类型 1. 系统存储过程 2. 本地存储过程 3. 临时存储过程 4. 扩展存储过程 1.3 T-SQL创建存储过程 1.4 T-SQL执行存储过程 1.5 T-SQL查看存储过程 1.6 T-SQL修改存储过程 1.7 T-SQL删除存储过程 2、触发器 2.1 …...
改进果蝇优化算法之一:自适应缩小步长的果蝇优化算法(ASFOA)
自适应缩小步长的果蝇优化算法(ASFOA)是对传统果蝇优化算法的一种重要改进,旨在克服其后期种群多样性不足、容易过早收敛和陷入局部最优等问题。有关果蝇优化算法的详情可以看我的文章:路径规划之启发式算法之二十七:果蝇优化算法(Fruit Fly Optimization Algorithm,FOA…...
道旅科技借助云消息队列 Kafka 版加速旅游大数据创新发展
作者:寒空、横槊、娜米、公仪 道旅科技:科技驱动,引领全球旅游分销服务 道旅科技 (https://www.didatravel.com/home) 成立于 2012 年,总部位于中国深圳,是一家以科技驱动的全球酒店资源批发商…...
LLM - 大模型 ScallingLaws 的 CLM 和 MLM 中不同系数(PLM) 教程(2)
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145188660 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scalin…...
游戏引擎学习第80天
Blackboard:增强碰撞循环,循环遍历两种类型的 t 值 计划对现有的碰撞检测循环进行修改,以便实现一些新的功能。具体来说,是希望处理在游戏中定义可行走区域和地面的一些实体。尽管这是一个2D游戏,目标是构建一些更丰富…...
CSS布局与响应式
学习链接 Grid网格布局 前端五大主流网页布局 flex布局看这一篇就够了 grid布局看这一篇就够了 用六个案例学会响应式布局 伸缩盒响应式页面布局实战 实现响应式布局的五种方式 - csdn 如何完成响应式布局,有几种方法?看这个就够了 响应式布局总…...
PyBroker:利用 Python 和机器学习助力算法交易
PyBroker:利用 Python 和机器学习助力算法交易 你是否希望借助 Python 和机器学习的力量来优化你的交易策略?那么你需要了解一下 PyBroker!这个 Python 框架专为开发算法交易策略而设计,尤其关注使用机器学习的策略。借助 PyBrok…...
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术 导语 卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图…...
彩色图像面积计算一般方法及MATLAB实现
一、引言 在数字图像处理中,经常需要获取感兴趣区域的面积属性,下面给出图像处理的一般步骤。 1.读入的彩色图像 2.将彩色图像转化为灰度图像 3.灰度图像转化为二值图像 4.区域标记 5.对每个区域的面积进行计算和显示 二、程序代码 %面积计算 cle…...
[Qt] Box Model | 控件样式 | 实现log_in界面
目录 1、样式属性 (1)盒模型(Box Model) 2、控件样式示例 (1)按钮 (2)复选框 (3)单选框 (4)输入框 (5)…...
内存与缓存:保姆级图文详解
文章目录 前言1、计算机存储设备1.1、硬盘、内存、缓存1.2、金字塔结构1.3、数据流通过程 2、数据结构内存效率3、数据结构缓存效率 前言 亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的…...
IM聊天学习资源
文章目录 参考链接使用前端界面简单效果消息窗口平滑滚动至底部vue使用watch监听vuex中的变量变化 websocket握手认证ChatKeyCheckHandlerNettyChatServerNettyChatInitializer 参考链接 zzhua/netty-chat-web - 包括前后端 vue.js实现带表情评论功能前后端实现(仿…...