当前位置: 首页 > news >正文

STM32小实验2

定时器实验

TIM介绍

  • TIMTimer)定时器
  • 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断
  • 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时
  • 不仅具备基本的定时中断功能,而且还包含内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等多种功能
  • 根据复杂度和应用场景分为了高级定时器、通用定时器、基本定时器三种类型

定时器类型

STM32F103C8T6定时器资源:TIM1TIM2TIM3TIM4

高级定时器

高级控制定时器(TIM1)可以被看成是分配到6个通道的三相PWM发生器,它具有带死区插入的互补 PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:
● 输入捕获
● 输出比较
● 产生PWM(边缘或中心对齐模式)
● 单脉冲输出
配置为16位标准定时器时,它与TIMx定时器具有相同的功能。配置为16位PWM发生器时,它具有全 调制能力(0~100%)。 在调试模式下,计数器可以被冻结,同时PWM输出被禁止,从而切断由这些输出所控制的开关。 很多功能都与标准的TIM定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功 能与TIM定时器协同操作,提供同步或事件链接功能。

通用定时器

STM32F103xx增强型产品中,内置了多达3个可同步运行的标准定时器(TIM2、TIM3和TIM4)。每个 定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通 道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输 入捕获、输出比较或PWM通道。 它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式 下,计数器可以被冻结。任一标准定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求 机制。 这些定时器还能够处理增量编码器的信号,也能处理1至3个霍尔传感器的数字输出。

基本定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:
● 24位的递减计数器
● 自动重加载功能
● 当计数器为0时能产生一个可屏蔽系统中断
● 可编程时钟源

定时中断基本结构

预分频时序

计数器计数频率:CK_CNT = CK_PSC / (PSC + 1)

计数器时序

计数器溢出频率:CK_CNT_OV = CK_CNT / (ARR + 1)
                                         = CK_PSC / (PSC + 1) / (ARR + 1)

计数器无预装时序

计数器有预装时序

RCC时钟树

定时器定时中断

#include "stm32f10x.h"                  // Device header/*** 函    数:定时中断初始化* 参    数:无* 返 回 值:无*/
void Timer_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;		//时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 10000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 7200 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;			//重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);				//将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元	/*中断输出配置*/TIM_ClearFlag(TIM2, TIM_FLAG_Update);						//清除定时器更新标志位//TIM_TimeBaseInit函数末尾,手动产生了更新事件//若不清除此标志位,则开启中断后,会立刻进入一次中断//如果不介意此问题,则不清除此标志位也可TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);					//开启TIM2的更新中断/*NVIC中断分组*/NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);				//配置NVIC为分组2//即抢占优先级范围:0~3,响应优先级范围:0~3//此分组配置在整个工程中仅需调用一次//若有多个中断,可以把此代码放在main函数内,while循环之前//若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置/*NVIC配置*/NVIC_InitTypeDef NVIC_InitStructure;						//定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;				//选择配置NVIC的TIM2线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;	//指定NVIC线路的抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;			//指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure);								//将结构体变量交给NVIC_Init,配置NVIC外设/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/* 定时器中断函数,可以复制到使用它的地方
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET){TIM_ClearITPendingBit(TIM2, TIM_IT_Update);}
}
*/
#ifndef __TIMER_H
#define __TIMER_Hvoid Timer_Init(void);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"uint16_t Num;			//定义在定时器中断里自增的变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化 OLED代码在实验1Timer_Init();		//定时中断初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Num:");			//1行1列显示字符串Num:while (1){OLED_ShowNum(1, 5, Num, 5);			//不断刷新显示Num变量}
}/*** 函    数:TIM2中断函数* 参    数:无* 返 回 值:无* 注意事项:此函数为中断函数,无需调用,中断触发后自动执行*           函数名为预留的指定名称,可以从启动文件复制*           请确保函数名正确,不能有任何差异,否则中断函数将不能进入*/
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)		//判断是否是TIM2的更新事件触发的中断{Num ++;												//Num变量自增,用于测试定时中断TIM_ClearITPendingBit(TIM2, TIM_IT_Update);			//清除TIM2更新事件的中断标志位//中断标志位必须清除//否则中断将连续不断地触发,导致主程序卡死}
}

定时器外部时钟

#include "stm32f10x.h"                  // Device header/*** 函    数:定时中断初始化* 参    数:无* 返 回 值:无* 注意事项:此函数配置为外部时钟,定时器相当于计数器*/
void Timer_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);						//将PA0引脚初始化为上拉输入/*外部时钟配置*/TIM_ETRClockMode2Config(TIM2, TIM_ExtTRGPSC_OFF, TIM_ExtTRGPolarity_NonInverted, 0x0F);//选择外部时钟模式2,时钟从TIM_ETR引脚输入//注意TIM2的ETR引脚固定为PA0,无法随意更改//最后一个滤波器参数加到最大0x0F,可滤除时钟信号抖动/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;		//时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 10 - 1;					//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;			//重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);				//将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元	/*中断输出配置*/TIM_ClearFlag(TIM2, TIM_FLAG_Update);						//清除定时器更新标志位//TIM_TimeBaseInit函数末尾,手动产生了更新事件//若不清除此标志位,则开启中断后,会立刻进入一次中断//如果不介意此问题,则不清除此标志位也可TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);					//开启TIM2的更新中断/*NVIC中断分组*/NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);				//配置NVIC为分组2//即抢占优先级范围:0~3,响应优先级范围:0~3//此分组配置在整个工程中仅需调用一次//若有多个中断,可以把此代码放在main函数内,while循环之前//若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置/*NVIC配置*/NVIC_InitTypeDef NVIC_InitStructure;						//定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;				//选择配置NVIC的TIM2线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;	//指定NVIC线路的抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;			//指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure);								//将结构体变量交给NVIC_Init,配置NVIC外设/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:返回定时器CNT的值* 参    数:无* 返 回 值:定时器CNT的值,范围:0~65535*/
uint16_t Timer_GetCounter(void)
{return TIM_GetCounter(TIM2);	//返回定时器TIM2的CNT
}/* 定时器中断函数,可以复制到使用它的地方
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET){TIM_ClearITPendingBit(TIM2, TIM_IT_Update);}
}
*/
#ifndef __TIMER_H
#define __TIMER_Hvoid Timer_Init(void);
uint16_t Timer_GetCounter(void);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"uint16_t Num;			//定义在定时器中断里自增的变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化  OLED代码在实验1Timer_Init();		//定时中断初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Num:");			//1行1列显示字符串Num:OLED_ShowString(2, 1, "CNT:");			//2行1列显示字符串CNT:while (1){OLED_ShowNum(1, 5, Num, 5);			//不断刷新显示Num变量OLED_ShowNum(2, 5, Timer_GetCounter(), 5);		//不断刷新显示CNT的值}
}/*** 函    数:TIM2中断函数* 参    数:无* 返 回 值:无* 注意事项:此函数为中断函数,无需调用,中断触发后自动执行*           函数名为预留的指定名称,可以从启动文件复制*           请确保函数名正确,不能有任何差异,否则中断函数将不能进入*/
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)		//判断是否是TIM2的更新事件触发的中断{Num ++;												//Num变量自增,用于测试定时中断TIM_ClearITPendingBit(TIM2, TIM_IT_Update);			//清除TIM2更新事件的中断标志位//中断标志位必须清除//否则中断将连续不断地触发,导致主程序卡死}
}

TIM输出比较

输出比较介绍

  • OCOutput Compare)输出比较
  • 输出比较可以通过比较CNTCCR寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频率和占空比的PWM波形
  • 每个高级定时器和通用定时器都拥有4个输出比较通道
  •           高级定时器的前3个通道额外拥有死区生成和互补输出的功能

PWM介绍

  • PWMPulse Width Modulation)脉冲宽度调制
  • 在具有惯性的系统中,可以通过对一系列脉冲的宽度进行调制,来等效地获得所需要的模拟参量,常应用于电机控速等领域
  • PWM参数:   频率 = 1 / TS            占空比 = TON / TS           分辨率 = 占空比变化步距

输出比较通道高级

输出比较通道通用

输出比较模式

PWM基本结构

参数计算

  • PWM频率:  Freq = CK_PSC / (PSC + 1) / (ARR + 1)
  • PWM占空比:  Duty = CCR / (ARR + 1)
  • PWM分辨率:  Reso = 1 / (ARR + 1)

PWM驱动LED呼吸灯

#include "stm32f10x.h"                  // Device header/*** 函    数:LED初始化* 参    数:无* 返 回 值:无*/
void LED_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);		//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);						//将PA1和PA2引脚初始化为推挽输出/*设置GPIO初始化后的默认电平*/GPIO_SetBits(GPIOA, GPIO_Pin_1 | GPIO_Pin_2);				//设置PA1和PA2引脚为高电平
}/*** 函    数:LED1开启* 参    数:无* 返 回 值:无*/
void LED1_ON(void)
{GPIO_ResetBits(GPIOA, GPIO_Pin_1);		//设置PA1引脚为低电平
}/*** 函    数:LED1关闭* 参    数:无* 返 回 值:无*/
void LED1_OFF(void)
{GPIO_SetBits(GPIOA, GPIO_Pin_1);		//设置PA1引脚为高电平
}/*** 函    数:LED1状态翻转* 参    数:无* 返 回 值:无*/
void LED1_Turn(void)
{if (GPIO_ReadOutputDataBit(GPIOA, GPIO_Pin_1) == 0)		//获取输出寄存器的状态,如果当前引脚输出低电平{GPIO_SetBits(GPIOA, GPIO_Pin_1);					//则设置PA1引脚为高电平}else													//否则,即当前引脚输出高电平{GPIO_ResetBits(GPIOA, GPIO_Pin_1);					//则设置PA1引脚为低电平}
}/*** 函    数:LED2开启* 参    数:无* 返 回 值:无*/
void LED2_ON(void)
{GPIO_ResetBits(GPIOA, GPIO_Pin_2);		//设置PA2引脚为低电平
}/*** 函    数:LED2关闭* 参    数:无* 返 回 值:无*/
void LED2_OFF(void)
{GPIO_SetBits(GPIOA, GPIO_Pin_2);		//设置PA2引脚为高电平
}/*** 函    数:LED2状态翻转* 参    数:无* 返 回 值:无*/
void LED2_Turn(void)
{if (GPIO_ReadOutputDataBit(GPIOA, GPIO_Pin_2) == 0)		//获取输出寄存器的状态,如果当前引脚输出低电平{                                                  GPIO_SetBits(GPIOA, GPIO_Pin_2);               		//则设置PA2引脚为高电平}                                                  else                                               		//否则,即当前引脚输出高电平{                                                  GPIO_ResetBits(GPIOA, GPIO_Pin_2);             		//则设置PA2引脚为低电平}
}
#ifndef __LED_H
#define __LED_Hvoid LED_Init(void);
void LED1_ON(void);
void LED1_OFF(void);
void LED1_Turn(void);
void LED2_ON(void);
void LED2_OFF(void);
void LED2_Turn(void);#endif
#include "stm32f10x.h"                  // Device header/*** 函    数:PWM初始化* 参    数:无* 返 回 值:无*/
void PWM_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO重映射*/
//	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);			//开启AFIO的时钟,重映射必须先开启AFIO的时钟
//	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);			//将TIM2的引脚部分重映射,具体的映射方案需查看参考手册
//	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);		//将JTAG引脚失能,作为普通GPIO引脚使用/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;		//GPIO_Pin_15;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA0引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式		/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;					//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元/*输出比较初始化*/TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);							//结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;				//输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;		//输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	//输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC1Init(TIM2, &TIM_OCInitStructure);						//将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:PWM设置CCR* 参    数:Compare 要写入的CCR的值,范围:0~100* 返 回 值:无* 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比*           占空比Duty = CCR / (ARR + 1)*/
void PWM_SetCompare1(uint16_t Compare)
{TIM_SetCompare1(TIM2, Compare);		//设置CCR1的值
}
#ifndef __PWM_H
#define __PWM_Hvoid PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);#endif
#include "stm32f10x.h"/*** @brief  微秒级延时* @param  xus 延时时长,范围:0~233015* @retval 无*/
void Delay_us(uint32_t xus)
{SysTick->LOAD = 72 * xus;				//设置定时器重装值SysTick->VAL = 0x00;					//清空当前计数值SysTick->CTRL = 0x00000005;				//设置时钟源为HCLK,启动定时器while(!(SysTick->CTRL & 0x00010000));	//等待计数到0SysTick->CTRL = 0x00000004;				//关闭定时器
}/*** @brief  毫秒级延时* @param  xms 延时时长,范围:0~4294967295* @retval 无*/
void Delay_ms(uint32_t xms)
{while(xms--){Delay_us(1000);}
}/*** @brief  秒级延时* @param  xs 延时时长,范围:0~4294967295* @retval 无*/
void Delay_s(uint32_t xs)
{while(xs--){Delay_ms(1000);}
} 
#ifndef __DELAY_H
#define __DELAY_Hvoid Delay_us(uint32_t us);
void Delay_ms(uint32_t ms);
void Delay_s(uint32_t s);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"uint8_t i;			//定义for循环的变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化PWM_Init();			//PWM初始化while (1){for (i = 0; i <= 100; i++){PWM_SetCompare1(i);			//依次将定时器的CCR寄存器设置为0~100,PWM占空比逐渐增大,LED逐渐变亮Delay_ms(10);				//延时10ms}for (i = 0; i <= 100; i++){PWM_SetCompare1(100 - i);	//依次将定时器的CCR寄存器设置为100~0,PWM占空比逐渐减小,LED逐渐变暗Delay_ms(10);				//延时10ms}}
}

舵机的介绍

  • 舵机是一种根据输入PWM信号占空比来控制输出角度的装置
  • 输入PWM信号要求:周期为20ms,高电平宽度为0.5ms~2.5ms

 PWM驱动舵机

#include "stm32f10x.h"                  // Device header/*** 函    数:PWM初始化* 参    数:无* 返 回 值:无*/
void PWM_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA1引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元/*输出比较初始化*/ TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC2Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC2Init,配置TIM2的输出比较通道2/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:PWM设置CCR* 参    数:Compare 要写入的CCR的值,范围:0~100* 返 回 值:无* 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比*           占空比Duty = CCR / (ARR + 1)*/
void PWM_SetCompare2(uint16_t Compare)
{TIM_SetCompare2(TIM2, Compare);		//设置CCR2的值
}
#ifndef __PWM_H
#define __PWM_Hvoid PWM_Init(void);
void PWM_SetCompare2(uint16_t Compare);#endif
#include "stm32f10x.h"                  // Device header
#include "PWM.h"/*** 函    数:舵机初始化* 参    数:无* 返 回 值:无*/
void Servo_Init(void)
{PWM_Init();									//初始化舵机的底层PWM
}/*** 函    数:舵机设置角度* 参    数:Angle 要设置的舵机角度,范围:0~180* 返 回 值:无*/
void Servo_SetAngle(float Angle)
{PWM_SetCompare2(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}
#ifndef __SERVO_H
#define __SERVO_Hvoid Servo_Init(void);
void Servo_SetAngle(float Angle);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Servo.h"
#include "Key.h"uint8_t KeyNum;			//定义用于接收键码的变量
float Angle;			//定义角度变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化 OLED代码在实验1Servo_Init();		//舵机初始化Key_Init();			//按键初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Angle:");	//1行1列显示字符串Angle:while (1){KeyNum = Key_GetNum();			//获取按键键码if (KeyNum == 1)				//按键1按下{Angle += 30;				//角度变量自增30if (Angle > 180)			//角度变量超过180后{Angle = 0;				//角度变量归零}}Servo_SetAngle(Angle);			//设置舵机的角度为角度变量OLED_ShowNum(1, 7, Angle, 3);	//OLED显示角度变量}
}

直流电机及驱动的介绍

  • 直流电机是一种将电能转换为机械能的装置,有两个电极,当电极正接时,电机正转,当电极反接时,电机反转
  • 直流电机属于大功率器件,GPIO口无法直接驱动,需要配合电机驱动电路来操作
  • TB6612是一款双路H桥型的直流电机驱动芯片,可以驱动两个直流电机并且控制其转速和方向

PWM驱动直流电机

#include "stm32f10x.h"                  // Device header
#include "PWM.h"/*** 函    数:直流电机初始化* 参    数:无* 返 回 值:无*/
void Motor_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);		//开启GPIOA的时钟GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);						//将PA4和PA5引脚初始化为推挽输出	PWM_Init();													//初始化直流电机的底层PWM
}/*** 函    数:直流电机设置速度* 参    数:Speed 要设置的速度,范围:-100~100* 返 回 值:无*/
void Motor_SetSpeed(int8_t Speed)
{if (Speed >= 0)							//如果设置正转的速度值{GPIO_SetBits(GPIOA, GPIO_Pin_4);	//PA4置高电平GPIO_ResetBits(GPIOA, GPIO_Pin_5);	//PA5置低电平,设置方向为正转PWM_SetCompare3(Speed);				//PWM设置为速度值}else									//否则,即设置反转的速度值{GPIO_ResetBits(GPIOA, GPIO_Pin_4);	//PA4置低电平GPIO_SetBits(GPIOA, GPIO_Pin_5);	//PA5置高电平,设置方向为反转PWM_SetCompare3(-Speed);			//PWM设置为负的速度值,因为此时速度值为负数,而PWM只能给正数}
}
#ifndef __MOTOR_H
#define __MOTOR_Hvoid Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"/*** 函    数:按键初始化* 参    数:无* 返 回 值:无*/
void Key_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_11;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);						//将PB1和PB11引脚初始化为上拉输入
}/*** 函    数:按键获取键码* 参    数:无* 返 回 值:按下按键的键码值,范围:0~2,返回0代表没有按键按下* 注意事项:此函数是阻塞式操作,当按键按住不放时,函数会卡住,直到按键松手*/
uint8_t Key_GetNum(void)
{uint8_t KeyNum = 0;		//定义变量,默认键码值为0if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1) == 0)			//读PB1输入寄存器的状态,如果为0,则代表按键1按下{Delay_ms(20);											//延时消抖while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1) == 0);	//等待按键松手Delay_ms(20);											//延时消抖KeyNum = 1;												//置键码为1}if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11) == 0)			//读PB11输入寄存器的状态,如果为0,则代表按键2按下{Delay_ms(20);											//延时消抖while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11) == 0);	//等待按键松手Delay_ms(20);											//延时消抖KeyNum = 2;												//置键码为2}return KeyNum;			//返回键码值,如果没有按键按下,所有if都不成立,则键码为默认值0
}
#ifndef __KEY_H
#define __KEY_Hvoid Key_Init(void);
uint8_t Key_GetNum(void);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"uint8_t KeyNum;		//定义用于接收按键键码的变量
int8_t Speed;		//定义速度变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化Motor_Init();		//直流电机初始化Key_Init();			//按键初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Speed:");		//1行1列显示字符串Speed:while (1){KeyNum = Key_GetNum();				//获取按键键码if (KeyNum == 1)					//按键1按下{Speed += 20;					//速度变量自增20if (Speed > 100)				//速度变量超过100后{Speed = -100;				//速度变量变为-100//此操作会让电机旋转方向突然改变,可能会因供电不足而导致单片机复位//若出现了此现象,则应避免使用这样的操作}}Motor_SetSpeed(Speed);				//设置直流电机的速度为速度变量OLED_ShowSignedNum(1, 7, Speed, 3);	//OLED显示速度变量}
}

输入捕获介绍

  • ICInput Capture)输入捕获
  • 输入捕获模式下,当通道输入引脚出现指定电平跳变时,当前CNT的值将被锁存到CCR中,可用于测量PWM波形的频率、占空比、脉冲间隔、电平持续时间等参数
  • 每个高级定时器和通用定时器都拥有4个输入捕获通道
  • 可配置为PWMI模式,同时测量频率和占空比
  • 可配合主从触发模式,实现硬件全自动测量

频率测量

  • 测频法:在闸门时间T内,对上升沿计次,得到N,则频率
  • 𝑓𝑥=𝑁 / 𝑇f_x=N / T
  • 测周法:两个上升沿内,以标准频率fc计次,得到N ,则频率
  • 𝑓𝑥=𝑓𝑐 / 𝑁f_x=f_c  / N
  • 中界频率:测频法与测周法误差相等的频率点
  • 𝑓𝑚=𝑓𝑐 / 𝑇f_m=√(f_c  / T)

输入捕获通道

主从触发模式

输入捕获基本结构

PWNI基本结构

输入捕获模式测频率

#include "stm32f10x.h"                  // Device header/*** 函    数:PWM初始化* 参    数:无* 返 回 值:无*/
void PWM_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO重映射*/
//	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);			//开启AFIO的时钟,重映射必须先开启AFIO的时钟
//	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);			//将TIM2的引脚部分重映射,具体的映射方案需查看参考手册
//	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);		//将JTAG引脚失能,作为普通GPIO引脚使用/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;		//GPIO_Pin_15;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA0引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式		/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;					//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元/*输出比较初始化*/TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);							//结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;				//输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;		//输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	//输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC1Init(TIM2, &TIM_OCInitStructure);						//将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:PWM设置CCR* 参    数:Compare 要写入的CCR的值,范围:0~100* 返 回 值:无* 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比*           占空比Duty = CCR / (ARR + 1)*/
void PWM_SetCompare1(uint16_t Compare)
{TIM_SetCompare1(TIM2, Compare);		//设置CCR1的值
}/*** 函    数:PWM设置PSC* 参    数:Prescaler 要写入的PSC的值,范围:0~65535* 返 回 值:无* 注意事项:PSC和ARR共同决定频率,此函数仅设置PSC的值,并不直接是频率*           频率Freq = CK_PSC / (PSC + 1) / (ARR + 1)*/
void PWM_SetPrescaler(uint16_t Prescaler)
{TIM_PrescalerConfig(TIM2, Prescaler, TIM_PSCReloadMode_Immediate);		//设置PSC的值
}
#ifndef __PWM_H
#define __PWM_Hvoid PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);
void PWM_SetPrescaler(uint16_t Prescaler);#endif
#include "stm32f10x.h"                  // Device header/*** 函    数:输入捕获初始化* 参    数:无* 返 回 值:无*/
void IC_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);			//开启TIM3的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA6引脚初始化为上拉输入/*配置时钟源*/TIM_InternalClockConfig(TIM3);		//选择TIM3为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;               //计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;               //预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM3的时基单元/*输入捕获初始化*/TIM_ICInitTypeDef TIM_ICInitStructure;							//定义结构体变量TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;				//选择配置定时器通道1TIM_ICInitStructure.TIM_ICFilter = 0xF;							//输入滤波器参数,可以过滤信号抖动TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;		//极性,选择为上升沿触发捕获TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;			//捕获预分频,选择不分频,每次信号都触发捕获TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;	//输入信号交叉,选择直通,不交叉TIM_ICInit(TIM3, &TIM_ICInitStructure);							//将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道/*选择触发源及从模式*/TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);					//触发源选择TI1FP1TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);					//从模式选择复位//即TI1产生上升沿时,会触发CNT归零/*TIM使能*/TIM_Cmd(TIM3, ENABLE);			//使能TIM3,定时器开始运行
}/*** 函    数:获取输入捕获的频率* 参    数:无* 返 回 值:捕获得到的频率*/
uint32_t IC_GetFreq(void)
{return 1000000 / (TIM_GetCapture1(TIM3) + 1);		//测周法得到频率fx = fc / N,这里不执行+1的操作也可
}
#ifndef __IC_H
#define __IC_Hvoid IC_Init(void);
uint32_t IC_GetFreq(void);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"
#include "IC.h"int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化PWM_Init();			//PWM初始化IC_Init();			//输入捕获初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Freq:00000Hz");		//1行1列显示字符串Freq:00000Hz/*使用PWM模块提供输入捕获的测试信号*/PWM_SetPrescaler(720 - 1);					//PWM频率Freq = 72M / (PSC + 1) / 100PWM_SetCompare1(50);						//PWM占空比Duty = CCR / 100while (1){OLED_ShowNum(1, 6, IC_GetFreq(), 5);	//不断刷新显示输入捕获测得的频率}
}

PWMI模式测频率占空比

#include "stm32f10x.h"                  // Device header/*** 函    数:PWM初始化* 参    数:无* 返 回 值:无*/
void PWM_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO重映射*/
//	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);			//开启AFIO的时钟,重映射必须先开启AFIO的时钟
//	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);			//将TIM2的引脚部分重映射,具体的映射方案需查看参考手册
//	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);		//将JTAG引脚失能,作为普通GPIO引脚使用/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;		//GPIO_Pin_15;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA0引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式		/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;					//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元/*输出比较初始化*/TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);							//结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;				//输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;		//输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	//输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC1Init(TIM2, &TIM_OCInitStructure);						//将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:PWM设置CCR* 参    数:Compare 要写入的CCR的值,范围:0~100* 返 回 值:无* 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比*           占空比Duty = CCR / (ARR + 1)*/
void PWM_SetCompare1(uint16_t Compare)
{TIM_SetCompare1(TIM2, Compare);		//设置CCR1的值
}/*** 函    数:PWM设置PSC* 参    数:Prescaler 要写入的PSC的值,范围:0~65535* 返 回 值:无* 注意事项:PSC和ARR共同决定频率,此函数仅设置PSC的值,并不直接是频率*           频率Freq = CK_PSC / (PSC + 1) / (ARR + 1)*/
void PWM_SetPrescaler(uint16_t Prescaler)
{TIM_PrescalerConfig(TIM2, Prescaler, TIM_PSCReloadMode_Immediate);		//设置PSC的值
}
#ifndef __PWM_H
#define __PWM_Hvoid PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);
void PWM_SetPrescaler(uint16_t Prescaler);#endif
#include "stm32f10x.h"                  // Device header/*** 函    数:输入捕获初始化* 参    数:无* 返 回 值:无*/
void IC_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);			//开启TIM3的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA6引脚初始化为上拉输入/*配置时钟源*/TIM_InternalClockConfig(TIM3);		//选择TIM3为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;               //计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;               //预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM3的时基单元/*PWMI模式初始化*/TIM_ICInitTypeDef TIM_ICInitStructure;							//定义结构体变量TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;				//选择配置定时器通道1TIM_ICInitStructure.TIM_ICFilter = 0xF;							//输入滤波器参数,可以过滤信号抖动TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;		//极性,选择为上升沿触发捕获TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;			//捕获预分频,选择不分频,每次信号都触发捕获TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;	//输入信号交叉,选择直通,不交叉TIM_PWMIConfig(TIM3, &TIM_ICInitStructure);						//将结构体变量交给TIM_PWMIConfig,配置TIM3的输入捕获通道//此函数同时会把另一个通道配置为相反的配置,实现PWMI模式/*选择触发源及从模式*/TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);					//触发源选择TI1FP1TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);					//从模式选择复位//即TI1产生上升沿时,会触发CNT归零/*TIM使能*/TIM_Cmd(TIM3, ENABLE);			//使能TIM3,定时器开始运行
}/*** 函    数:获取输入捕获的频率* 参    数:无* 返 回 值:捕获得到的频率*/
uint32_t IC_GetFreq(void)
{return 1000000 / (TIM_GetCapture1(TIM3) + 1);		//测周法得到频率fx = fc / N,这里不执行+1的操作也可
}/*** 函    数:获取输入捕获的占空比* 参    数:无* 返 回 值:捕获得到的占空比*/
uint32_t IC_GetDuty(void)
{return (TIM_GetCapture2(TIM3) + 1) * 100 / (TIM_GetCapture1(TIM3) + 1);	//占空比Duty = CCR2 / CCR1 * 100,这里不执行+1的操作也可
}
#ifndef __IC_H
#define __IC_Hvoid IC_Init(void);
uint32_t IC_GetFreq(void);
uint32_t IC_GetDuty(void);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"
#include "IC.h"int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化PWM_Init();			//PWM初始化IC_Init();			//输入捕获初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Freq:00000Hz");		//1行1列显示字符串Freq:00000HzOLED_ShowString(2, 1, "Duty:00%");			//2行1列显示字符串Duty:00%/*使用PWM模块提供输入捕获的测试信号*/PWM_SetPrescaler(720 - 1);					//PWM频率Freq = 72M / (PSC + 1) / 100PWM_SetCompare1(50);						//PWM占空比Duty = CCR / 100while (1){OLED_ShowNum(1, 6, IC_GetFreq(), 5);	//不断刷新显示输入捕获测得的频率OLED_ShowNum(2, 6, IC_GetDuty(), 2);	//不断刷新显示输入捕获测得的占空比}
}

编码器接口介绍

  • Encoder Interface 编码器接口
  • 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的位置、旋转方向和旋转速度
  • 每个高级定时器和通用定时器都拥有1个编码器接口
  • 两个输入引脚借用了输入捕获的通道1和通道2

正交编码器

编码器接口基本结构

工作模式

实例(均不反向)

实例(TI1反向)

编码器接口测速

#include "stm32f10x.h"                  // Device header/*** 函    数:定时中断初始化* 参    数:无* 返 回 值:无*/
void Timer_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;		//时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 10000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 7200 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;			//重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);				//将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元	/*中断输出配置*/TIM_ClearFlag(TIM2, TIM_FLAG_Update);						//清除定时器更新标志位//TIM_TimeBaseInit函数末尾,手动产生了更新事件//若不清除此标志位,则开启中断后,会立刻进入一次中断//如果不介意此问题,则不清除此标志位也可TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);					//开启TIM2的更新中断/*NVIC中断分组*/NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);				//配置NVIC为分组2//即抢占优先级范围:0~3,响应优先级范围:0~3//此分组配置在整个工程中仅需调用一次//若有多个中断,可以把此代码放在main函数内,while循环之前//若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置/*NVIC配置*/NVIC_InitTypeDef NVIC_InitStructure;						//定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;				//选择配置NVIC的TIM2线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;	//指定NVIC线路的抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;			//指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure);								//将结构体变量交给NVIC_Init,配置NVIC外设/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/* 定时器中断函数,可以复制到使用它的地方
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET){TIM_ClearITPendingBit(TIM2, TIM_IT_Update);}
}
*/
#ifndef __TIMER_H
#define __TIMER_Hvoid Timer_Init(void);#endif
#include "stm32f10x.h"                  // Device header/*** 函    数:编码器初始化* 参    数:无* 返 回 值:无*/
void Encoder_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);			//开启TIM3的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA6和PA7引脚初始化为上拉输入/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;               //计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1;                //预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM3的时基单元/*输入捕获初始化*/TIM_ICInitTypeDef TIM_ICInitStructure;							//定义结构体变量TIM_ICStructInit(&TIM_ICInitStructure);							//结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;				//选择配置定时器通道1TIM_ICInitStructure.TIM_ICFilter = 0xF;							//输入滤波器参数,可以过滤信号抖动TIM_ICInit(TIM3, &TIM_ICInitStructure);							//将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;				//选择配置定时器通道2TIM_ICInitStructure.TIM_ICFilter = 0xF;							//输入滤波器参数,可以过滤信号抖动TIM_ICInit(TIM3, &TIM_ICInitStructure);							//将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道/*编码器接口配置*/TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//配置编码器模式以及两个输入通道是否反相//注意此时参数的Rising和Falling已经不代表上升沿和下降沿了,而是代表是否反相//此函数必须在输入捕获初始化之后进行,否则输入捕获的配置会覆盖此函数的部分配置/*TIM使能*/TIM_Cmd(TIM3, ENABLE);			//使能TIM3,定时器开始运行
}/*** 函    数:获取编码器的增量值* 参    数:无* 返 回 值:自上此调用此函数后,编码器的增量值*/
int16_t Encoder_Get(void)
{/*使用Temp变量作为中继,目的是返回CNT后将其清零*/int16_t Temp;Temp = TIM_GetCounter(TIM3);TIM_SetCounter(TIM3, 0);return Temp;
}
#ifndef __ENCODER_H
#define __ENCODER_Hvoid Encoder_Init(void);
int16_t Encoder_Get(void);#endif
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"
#include "Encoder.h"int16_t Speed;			//定义速度变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化Timer_Init();		//定时器初始化Encoder_Init();		//编码器初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Speed:");		//1行1列显示字符串Speed:while (1){OLED_ShowSignedNum(1, 7, Speed, 5);	//不断刷新显示编码器测得的最新速度}
}/*** 函    数:TIM2中断函数* 参    数:无* 返 回 值:无* 注意事项:此函数为中断函数,无需调用,中断触发后自动执行*           函数名为预留的指定名称,可以从启动文件复制*           请确保函数名正确,不能有任何差异,否则中断函数将不能进入*/
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)		//判断是否是TIM2的更新事件触发的中断{Speed = Encoder_Get();								//每隔固定时间段读取一次编码器计数增量值,即为速度值TIM_ClearITPendingBit(TIM2, TIM_IT_Update);			//清除TIM2更新事件的中断标志位//中断标志位必须清除//否则中断将连续不断地触发,导致主程序卡死}
}

相关文章:

STM32小实验2

定时器实验 TIM介绍 TIM&#xff08;Timer&#xff09;定时器 定时器可以对输入的时钟进行计数&#xff0c;并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元&#xff0c;在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断…...

Oracle Dataguard(主库为双节点集群)配置详解(2):备库安装 Oracle 软件

Oracle Dataguard&#xff08;主库为双节点集群&#xff09;配置详解&#xff08;2&#xff09;&#xff1a;备库安装 Oracle 软件 目录 Oracle Dataguard&#xff08;主库为双节点集群&#xff09;配置详解&#xff08;2&#xff09;&#xff1a;备库安装 Oracle 软件一、Orac…...

基于 Pod 和 Service 注解的服务发现

基于 Pod 和 Service 注解的服务发现 背景 很多应用会为 Pod 或 Service 打上一些注解用于 Prometheus 的服务发现&#xff0c;如 prometheus.io/scrape: "true"&#xff0c;这种注解并不是 Prometheus 官方支持的&#xff0c;而是社区的习惯性用法&#xff0c;要使…...

操作系统之文件的逻辑结构

目录 无结构文件&#xff08;流式文件&#xff09; 有结构文件&#xff08;记录式文件&#xff09; 分类&#xff1a; 顺序文件 特点&#xff1a; 存储方式&#xff1a; 逻辑结构&#xff1a; 优缺点&#xff1a; 索引文件 目的&#xff1a; 结构&#xff1a; 特点…...

网络分析与监控:阿里云拨测方案解密

作者&#xff1a;俞嵩(榆松) 随着互联网的蓬勃发展&#xff0c;网络和服务的稳定性已成为社会秩序中不可或缺的一部分。一旦网络和服务发生故障&#xff0c;其带来的后果将波及整个社会、企业和民众的生活质量&#xff0c;造成难以估量的损失。 2020 年 12 月&#xff1a; Ak…...

vue实现虚拟列表滚动

<template> <div class"cont"> //box 视图区域Y轴滚动 滚动的是box盒子 滚动条显示的也是因为box<div class"box">//itemBox。 一个空白的盒子 计算高度为所有数据的高度 固定每一条数据高度为50px<div class"itemBox" :st…...

服务器/电脑与代码仓gitlab/github免密连接

git config --global user.name "xxxx" git config --global user.email "xxxxxx163.com" #使用注册GitHub的邮箱 生成对应邮箱的密码对 ssh-keygen -t rsa -b 4096 -C "xxxxxx163.com" 把公钥id_rsa.pub拷贝到github中 Setting----->…...

用户界面软件03

一种标准的满足不同的非功能性需求的技术是对子系统进行不同的考虑……但是一个用户 界面要求有大量的域层面的信息&#xff0c;以符合比较高的人机工程标准&#xff0c;所以&#xff0c;这些分开的子系统还是 紧密地耦合在一起的。 一个软件架构师的标准反应是将不同的非功能…...

年会抽奖Html

在这里插入图片描述 <!-- <video id"backgroundMusic" src"file:///D:/background.mp3" loop autoplay></video> --> <divstyle"width: 290px; height: 580px; margin-left: 20px; margin-top: 20px; background: url(D:/nianhu…...

(一)Ubuntu20.04版本的ROS环境配置与基本概述

前言 ROS不需要在特定的环境下进行安装&#xff0c;不管你是Ubuntu的什么版本或者还是虚拟机都可以按照教程进行安装。 1.安装ROS 一键安装ros及ros2 wget http://fishros.com/install -O fishros && . fishros 按照指示安装你想要的ros。 ros和ros2是可以兼容的…...

深入分析线程安全问题的本质

深入分析线程安全问题的本质 1. 并发编程背后的性能博弈2. 什么是线程安全问题&#xff1f;3. 源头之一&#xff1a;原子性问题3.1. 原子性问题示例3.2. 原子性问题分析3.3. 如何解决原子性问题&#xff1f; 4. 源头之二&#xff1a;可见性问题4.1. 为什么会有可见性问题&#…...

58. Three.js案例-创建一个带有红蓝配置的半球光源的场景

58. Three.js案例-创建一个带有红蓝配置的半球光源的场景 实现效果 本案例展示了如何使用Three.js创建一个带有红蓝配置的半球光源的场景&#xff0c;并在其中添加一个旋转的球体。通过设置不同的光照参数&#xff0c;可以观察到球体表面材质的变化。 知识点 WebGLRenderer …...

插入实体自增主键太长,mybatis-plaus自增主键

1、问题 spring-boot整合mybtais执行insert语句时&#xff0c;主键id为长文本数据。 2、分析问题 1)数据库主键是否自增 2&#xff09;数据库主键的种子值设置的多少 3、解决问题 1&#xff09;数据库主键设置的时自增 3&#xff09;种子值是1 所以排查是数据库的问题 4、继…...

【利用 Unity + Mirror 网络框架、Node.js 后端和 MySQL 数据库】

要实现一个简单的1v1战斗小游戏&#xff0c;利用 Unity Mirror 网络框架、Node.js 后端和 MySQL 数据库&#xff0c;我们可以将其分为几个主要部分&#xff1a;客户端&#xff08;Unity&#xff09;、服务器&#xff08;Node.js&#xff09;和数据库&#xff08;MySQL&#xf…...

https原理

一、基本概念 1、https概念 https&#xff08;全称&#xff1a; Hypertext Transfer Protocol Secure&#xff0c;超文本传输安全协议&#xff09;&#xff0c;是以安全为目标的http通道&#xff0c;简单讲是http的安全版。 2、为啥说http协议不安全呢&#xff1f; 我们用h…...

如何处理京东商品详情接口返回的JSON数据中的缺失值?

1.在 Python 中处理缺失值 使用if - else语句进行检查和处理 假设通过requests库获取了接口返回的 JSON 数据&#xff0c;并使用json模块进行解析&#xff0c;存储在data变量中。 import json import requestsurl "YOUR_API_URL" response requests.get(url) dat…...

window对象

bom dom部分学完了&#xff0c;来看看bom吧~ bom是整个浏览器&#xff0c;本质上bom与dom是包含的关系&#xff0c;window是里面最大的对象 调用的方法默认对象是window&#xff0c;一般都会省略前面的window 创建的全局变量也是属于window的&#xff0c;当然window也可以省…...

(五)ROS通信编程——参数服务器

前言 参数服务器在ROS中主要用于实现不同节点之间的数据共享&#xff08;P2P&#xff09;。参数服务器相当于是独立于所有节点的一个公共容器&#xff0c;可以将数据存储在该容器中&#xff0c;被不同的节点调用&#xff0c;当然不同的节点也可以往其中存储数据&#xff0c;关…...

MySQL常用命令之汇总(Summary of Commonly Used Commands in MySQL)

MySQL常用命令汇总 简介 ‌MySQL是一个广泛使用的开源关系型数据库管理系统&#xff0c;由瑞典的MySQL AB公司开发&#xff0c;现属于Oracle公司。‌ MySQL支持SQL&#xff08;结构化查询语言&#xff09;&#xff0c;这是数据库操作的标准语言&#xff0c;用户可以使用SQL进…...

更新至2023年,各省数字经济变量/各省数字经济相关指标数据集(20个指标)

更新至2023年&#xff0c;各省数字经济相关指标数据集&#xff08;20个指标&#xff09; 1、时间&#xff1a;更新至2023年&#xff0c;具体时间如下 2、指标&#xff1a;互联网宽带接入端口(万个)&#xff08;2006-2023&#xff09;、互联网宽带接入用户(万户)&#xff08;2…...

聚类系列 (二)——HDBSCAN算法详解

在进行组会汇报的时候&#xff0c;为了引出本研究动机&#xff08;论文尚未发表&#xff0c;暂不介绍&#xff09;&#xff0c;需要对DBSCAN、OPTICS、和HDBSCAN算法等进行详细介绍。在查询相关资料的时候&#xff0c;发现网络上对于DBSCAN算法的介绍非常多与细致&#xff0c;但…...

【JavaEE】—— SpringBoot项目集成百度千帆AI大模型(对话Chat V2)

本篇文章在SpringBoot项目中集成百度千帆提供的大模型接口实现Chat问答效果&#xff1a; 一、百度智能云 百度千帆大模型平台是百度智能云推出的一个企业级一站式大模型与AI原生应用开发及服务平台。 注册地址&#xff1a;https://qianfan.cloud.baidu.com/ 注册成功后&…...

一种更激进的Hook实现方案猜想

XXX原创不原创不清楚&#xff0c;暂定为原创。毕竟windows 大神很多XXX 昨天才发现不是原创&#xff0c;这种方案是VEH HOOK的一种实现方案。VEH HOOK很久很久以前都被广泛使用了。只是自己没听说过。好悲哀呀。。。。 激进的猜想&#xff1a; 如果VEH HOOK在内核态处理异常…...

HTML5实现好看的端午节网页源码

HTML5实现好看的端午节网页源码 前言一、设计来源1.1 网站首页界面1.2 登录注册界面1.3 端午节由来界面1.4 端午节习俗界面1.5 端午节文化界面1.6 端午节美食界面1.7 端午节故事界面1.8 端午节民谣界面1.9 联系我们界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载结束语 H…...

微信小程序获取图片使用session(上篇)

概述&#xff1a; 我们开发微信小程序&#xff0c;从后台获取图片现实的时候&#xff0c;通常采用http get的方式&#xff0c;例如以下代码 <image class"user_logo" src"{{logoUrl}}"></image>变量logoUrl为ur图片l的请求地址 但是对于很多…...

RT-DETR融合YOLOv9的下采样模块ADown

RT-DETR使用教程&#xff1a; RT-DETR使用教程 RT-DETR改进汇总贴&#xff1a;RT-DETR更新汇总贴 《YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information》 一、 模块介绍 论文链接&#xff1a;https://arxiv.org/abs/2402.13616 代码链接&…...

【机器学习案列】学生抑郁可视化及预测分析

&#x1f9d1; 博主简介&#xff1a;曾任某智慧城市类企业算法总监&#xff0c;目前在美国市场的物流公司从事高级算法工程师一职&#xff0c;深耕人工智能领域&#xff0c;精通python数据挖掘、可视化、机器学习等&#xff0c;发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…...

CES 2025|美格智能高算力AI模组助力“通天晓”人形机器人震撼发布

当地时间1月7日&#xff0c;2025年国际消费电子展&#xff08;CES 2025&#xff09;在美国拉斯维加斯正式开幕。美格智能合作伙伴阿加犀联合高通在展会上面向全球重磅发布人形机器人原型机——通天晓&#xff08;Ultra Magnus&#xff09;。该人形机器人内置美格智能基于高通QC…...

Linux第一个系统程序---进度条

进度条---命令行版本 回车换行 其实本质上回车和换行是不同概念&#xff0c;我们用一张图来简单的理解一下&#xff1a; 在计算机语言当中&#xff1a; 换行符&#xff1a;\n 回车符&#xff1a;\r \r\n&#xff1a;回车换行 这时候有人可能会有疑问&#xff1a;我在学习C…...

黑马跟学.苍穹外卖.Day04

黑马跟学.苍穹外卖.Day04 苍穹外卖-day04课程内容1. Redis入门1.1 Redis简介1.2 Redis下载与安装1.2.1 Redis下载1.2.2 Redis安装 1.3 Redis服务启动与停止1.3.1 服务启动命令1.3.2 客户端连接命令1.3.3 修改Redis配置文件1.3.4 Redis客户端图形工具 2. Redis数据类型2.1 五种常…...

人生第一次面试之依托答辩

今天收到人生的第一场面试&#xff0c;是东华软件集团。答的那是依托答辩&#xff0c;就面了20分钟&#xff0c;还没考算法。其实依托答辩的效果是意料之中的&#xff0c;这次面试也只是想练练手。 目录 静态变量什么时候加载的&#xff1f; 重写和重载有什么区别&#xff1…...

STM32 : PWM 基本结构

这张图展示了PWM&#xff08;脉冲宽度调制&#xff09;的基本结构和工作流程。PWM是一种用于控制功率转换器输出电压的技术&#xff0c;通过调整信号的占空比来实现对负载的精确控制。以下是详细讲解&#xff1a; PWM 基本结构 1. 时基单元 ARR (Auto-reload register): 自动…...

【大模型(LLM)面试全解】深度解析 Layer Normalization 的原理、变体及实际应用

系列文章目录 大模型&#xff08;LLMs&#xff09;基础面 01-大模型&#xff08;LLM&#xff09;面试全解&#xff1a;主流架构、训练目标、涌现能力全面解析 02-【大模型&#xff08;LLM&#xff09;面试全解】深度解析 Layer Normalization 的原理、变体及实际应用 大模型&…...

《浮岛风云》V1.0中文学习版

《浮岛风云》中文版https://pan.xunlei.com/s/VODadt0vSGdbrVOBEsW9Xx8iA1?pwdy7c3# 一款有着类似暗黑破坏神的战斗系统、类似最终幻想的奇幻世界和100%可破坏体素环境的动作冒险RPG。...

学习threejs,导入babylon格式的模型

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️THREE.BabylonLoader babyl…...

Django 社团管理系统的设计与实现

标题:Django 社团管理系统的设计与实现 内容:1.摘要 本文介绍了 Django 社团管理系统的设计与实现。通过分析社团管理的需求&#xff0c;设计了系统的架构和功能模块&#xff0c;并使用 Django 框架进行了实现。系统包括社团信息管理、成员管理、活动管理、财务管理等功能&…...

2025 GitCode 开发者冬日嘉年华:AI 与开源的深度交融之旅

在科技的浪潮中&#xff0c;AI 技术与开源探索的火花不断碰撞&#xff0c;催生出无限可能。2025 年 1 月 4 日&#xff0c;由 GitCode 联合 CSDN COC 城市开发者社区精心打造的开年首场开发者活动&#xff1a;冬日嘉年华在北京中关村 • 鼎好 DH3-A 座 22 层盛大举行&#xff0…...

嵌入式系统 tensorflow

&#x1f3ac; 秋野酱&#xff1a;《个人主页》 &#x1f525; 个人专栏:《Java专栏》《Python专栏》 ⛺️心若有所向往,何惧道阻且长 文章目录 探索嵌入式系统中的 TensorFlow&#xff1a;机遇与挑战一、TensorFlow 适配嵌入式的优势二、面临的硬件瓶颈三、软件优化策略四、实…...

Web无障碍

文章目录 &#x1f7e2;Web Accessibility-Web无障碍&#x1f7e2;一、Web Accessibility-Web1. web无障碍设计2. demo3.使用相关相关开源无障碍工具条(调用可能会根据网络有点慢) 如有其他更好方案&#xff0c;可以私信我哦✒️总结 &#x1f7e2;Web Accessibility-Web无障碍…...

Qt使用MySQL数据库(Win)----2.配置MySQL驱动

使用Everything软件&#xff0c;找到mysql.pro文件。并使用qt creator打开mysql.pro。 导入外部库 选择外部库 点击下一步&#xff0c;勾选。 为debug版本添加‘d’作为后缀取消勾选&#xff0c;然后点击下一步 添加后的Pro文件。 这样文件应该是改好了&#xff0c;选择releas…...

记录一下vue2项目优化,虚拟列表vue-virtual-scroll-list处理10万条数据

文章目录 封装BrandPickerVirtual.vue组件页面使用组件属性 select下拉接口一次性返回10万条数据&#xff0c;页面卡死&#xff0c;如何优化&#xff1f;&#xff1f;这里使用 分页 虚拟列表&#xff08;vue-virtual-scroll-list&#xff09;&#xff0c;去模拟一个下拉的内容…...

java 中 main 方法使用 KafkaConsumer 拉取 kafka 消息如何禁止输出 debug 日志

pom 依赖&#xff1a; <dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><version>2.5.14.RELEASE</version> </dependency> 或者 <dependency><groupId>org.ap…...

前端性能优化全攻略:加速网页加载,提升用户体验

前端性能优化全攻略&#xff1a;加速网页加载&#xff0c;提升用户体验 在当今互联网时代&#xff0c;用户对于网页的加载速度和性能要求越来越高。一个快速响应、流畅加载的网页能够极大地提升用户体验&#xff0c;增加用户留存率和满意度。前端性能优化是实现这一目标的关键…...

关于内网外网,ABC类地址,子网掩码划分

本文的三个关键字是&#xff1a;内网外网&#xff0c;ABC类地址&#xff0c;子网掩码划分。围绕以下问题展开&#xff1a; 如何从ip区分外网、内网&#xff1f;win和linux系统中&#xff0c;如何查询自己的内网ip和外网ip。开发视角看内外网更多是处于安全考虑&#xff0c;接口…...

【C++多线程编程:六种锁】

目录 普通互斥锁&#xff1a; 轻量级锁 独占锁&#xff1a; std::lock_guard&#xff1a; std::unique_lock: 共享锁&#xff1a; 超时的互斥锁 递归锁 普通互斥锁&#xff1a; std::mutex确保任意时刻只有一个线程可以访问共享资源&#xff0c;在多线程中常用于保…...

【LeetCode】力扣刷题热题100道(16-20题)附源码 容器 子数组 数组 连续序列 三数之和(C++)

目录 1.盛最多水的容器 2.和为K的子数组 3.最大子数组和 4.最长连续序列 5.三数之和 1.盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴…...

WHAT - devicePixelRatio 与像素分辨率

目录 语法理解 devicePixelRatio常见值应用场景注意事项在高分辨率屏幕下的视觉效果 devicePixelRatio 是一个浏览器属性&#xff0c;用来表示设备的物理像素与 CSS 像素之间的比例。它是屏幕显示清晰度的重要指标&#xff0c;特别是在高分辨率屏幕&#xff08;如 Retina 显示屏…...

【cs.CV】25.1.8 arxiv更新速递

—第1篇---- ===== ConceptMaster: 面向扩散Transformer模型的多概念视频定制,无需测试时调优 🔍 关键词: 文本到视频生成, 扩散模型, 多概念定制, 身份解耦 链接1 摘要: 文本到视频生成通过扩散模型取得了显著进展。然而,多概念视频定制(MCVC)仍然是一个重大挑战。…...

C#使用MVC框架创建WebApi服务接口

第一步,使用VS2019新建MVC-Web API应用程序 创建BridgeApi 第二步,运行将生成默认的示例网页,网页Url为 https://localhost:44361/home/index 右键 项目 添加 WebAPI控制器类 添加 我们可以看到App_Start目录下 有三个文件: BundleConfig.cs代表 捆绑文件的引用 有脚本文件…...

慧集通(DataLinkX)iPaaS集成平台-智能体(Agent)API

功能简介&#xff1a; 该功能下主要是用来管理集成平台对外开放接口得管控以及调用日志信息得查看操作&#xff0c;并支持日志得重放等操作&#xff1b;注&#xff1a;所有触发类单据得日志也可以在此查看(如使用数据触发组件自动触发流程得日志信息) 1.第三方调用接口类日志查…...