当前位置: 首页 > news >正文

初学stm32 --- FSMC驱动LCD屏

 

目录

 

FSMC简介

FSMC框图介绍

FSMC通信引脚介绍

FSMC_NWE 的作用

FSMC_NWE 的时序关系

FSMC_NOE 的含义

FSMC_NOE 的典型用途

FSMC_NOE 的时序关系

使用FSMC驱动LCD

FSMC时序介绍 

时序特性中的 OE

 ILI9341重点时序:

FSMC地址映射 

 HADDR与FSMC_A关系

 LCD的RS信号线与地址线关系

FSMC相关寄存器介绍

SRAM/NOR闪存片选控制寄存器(FSMC_BCRx) 

SRAM/NOR闪存片选时序寄存器(FSMC_BTRx)

SRAM/NOR闪存写时序寄存器(FSMC_BWTRx)

FSMC寄存器组合说明

FSMC相关HAL库函数简介

 SRAM_HandleTypeDef

FSMC_NORSRAM_InitTypeDef

FSMC模拟8080时序读写简化代码


FSMC简介

FSMC,Flexible Static Memory Controller,灵活的静态存储控制器。

用途:用于驱动SRAM,NOR FLASH,NAND FLASH及PC卡类型的存储器。

        配置好FSMC,定义一个指向这些地址的指针,通过对指针操作就可以直接修改存储单元的内容,FSMC自动完成读写命令和数据访问操作,不需要程序去实现时序。

        FSMC外设配置好就可以模拟出时序。

实例:FSMC模拟8080时序控制LCD

F1/ F4(407)系列大容量型号,且引脚数目在100脚以上的芯片都有FSMC接口

F4/F7/H7系列就是FMC接口

FSMC框图介绍

① 时钟控制逻辑

FSMC挂载在AHB总线上,时钟信号来自HCLK

② STM32内部的FSMC控制单元

NOR闪存和PSRAM控制器、NAND闪存和PC卡控制器、FSMC配置寄存器

③ 通信引脚

不同类型存储器用到的信号引脚

公共信号引脚

FSMC通信引脚介绍

  用于连接硬件设备的引脚,控制不同类型的存储器会用不同的引脚。

  • FSMC_NWE 的作用

  • 用于写操作

    • FSMC_NWE 用于通知外部存储器执行写操作。
    • 在写操作期间,FSMC 会将 FSMC_NWE 拉低(逻辑 0),使能外部存储器的写操作。
    • FSMC_NWE 通常连接到外部存储器的 WE(Write Enable)引脚,确保数据可以正确写入外部存储器。
  • 与数据总线和地址总线的配合

    • 在写操作中:
      • FSMC_NWE 为低电平时,外部存储器会从 FSMC 的数据总线(FSMC_Dx)上读取数据,并将数据写入指定的存储地址(由地址总线 FSMC_Ax 提供)。
      • FSMC_NWE 回到高电平时,写操作完成。
  • 写入控制的时序信号

    • FSMC 控制 FSMC_NWE 的上升沿和下降沿来定义写入周期的开始和结束,确保数据正确写入外部存储器。

FSMC_NWE 的时序关系

FSMC_NWE 的控制信号与以下其他 FSMC 信号配合使用:

  1. FSMC_NE(芯片选择,Chip Select)
    • 用于选择具体的外部存储器。
    • FSMC_NE 为低电平时,所选存储器芯片被激活。
  2. FSMC_A(地址总线)
    • 提供数据写入的目标地址。
  3. FSMC_D(数据总线)
    • 提供要写入的数据。
  4. FSMC_NWAIT(等待信号,可选)
    • 外部存储器可以通过拉高或拉低 FSMC_NWAIT 信号请求延迟完成写操作。

以下是典型的 FSMC 写入时序:

  • FSMC 首先激活 FSMC_NE(芯片选择)。
  • 然后将 FSMC_Ax(地址)和 FSMC_Dx(数据)设置为目标地址和数据值。
  • FSMC_NWE 被拉低,外部存储器开始写入。
  • 当写入完成后,FSMC_NWE 被拉高,FSMC 将完成该写操作。

FSMC_NOE 的含义

FSMC_NOE 的全称是 FSMC Output Enable (输出使能),它是 FSMC 用于控制外部存储器数据输出的信号引脚。

  • 名称含义

    • N:代表负逻辑(Active Low,低电平有效)。
    • OE:Output Enable(输出使能信号)。
  • 功能

    • FSMC_NOE 控制外部存储器是否将数据输出到 FSMC 的数据总线上。
    • FSMC_NOE 为低电平(逻辑 0)时,外部存储器的输出缓冲区被使能,数据可以传输到 FSMC 的数据总线。
    • FSMC_NOE 为高电平(逻辑 1)时,外部存储器的输出缓冲区被禁用,数据不会输出。

FSMC_NOE 的典型用途

  1. 与外部存储器的接口控制

    • 在读取外部存储器(如 NOR Flash 或 SRAM)时,FSMC 控制 FSMC_NOE 以使能数据的输出。
    • FSMC_NOE 信号通常连接到外部存储器的 OE 引脚,表示“是否允许数据输出”。
  2. 在读取操作中的作用

    • FSMC 进行读取操作时,FSMC_NOE 被拉低,通知外部存储器将数据放到数据总线上。
    • 在写操作或非活跃状态时,FSMC_NOE 保持高电平。

FSMC_NOE 的时序关系

FSMC_NOE 的控制通常与以下信号配合使用:

  1. FSMC_NE(芯片选择,Chip Select)
    • FSMC_NE 用于选择具体的外部存储器芯片。
    • FSMC_NE 为低电平时,选中的外部存储器被激活。
  2. FSMC_NWE(写使能,Write Enable)
    • 用于指示写操作。
    • FSMC_NWE 为低电平时,表示正在向存储器写入数据。
  3. 地址和数据总线(FSMC_A 和 FSMC_D)
    • 地址总线(FSMC_A)提供要访问的外部存储器地址。
    • 数据总线(FSMC_D)用于传输数据。

典型的读取时序如下:

  • FSMC 控制 FSMC_NE(芯片使能)和 FSMC_NOE(输出使能)信号,激活外部存储器的数据输出。
  • FSMC_NOE 拉低后,外部存储器将数据输出到数据总线上。
  • 数据输出完成后,FSMC 会将 FSMC_NOE 拉高,关闭数据输出。

使用FSMC驱动LCD

FSMC时序介绍 

FSMC是Flexible灵活的,可以产生多种时序来控制外部存储器。

  NOR/PSRAM控制器产生的异步时序就有5种,总体分为两类:一类是模式1,其他为拓展模式。

  拓展模式相对模式1来说读写时序时间参数设置可以不同,满足存储器读写时序不一样需求。

时序特性中的 OE

在时序特性中,“OE 在读取时序片选过程中不翻转” 或 “OE 在读取时序片选过程中翻转” 指的是 FSMC 控制 OE 信号在读取操作期间的状态行为:

  1. 不翻转

    • 读取操作开始时,FSMC 会将 OE 拉低,保持不变直到读取完成。
    • 这种方式适用于大多数 SRAM 或 CRAM 类型存储器。
  2. 翻转

    • 读取操作期间,FSMC 会在不同阶段对 OE 信号进行翻转(拉低-拉高-拉低),以协调更复杂的外部存储器时序。
    • 这种方式适用于特定类型的外部存储器,例如一些特殊的 SRAM 或 PSRAM。

 

 ILI9341重点时序:

读ID低电平脉宽(trdl)                        读ID高电平脉宽(trdh)

读FM低电平脉宽(trdlfm)                  读FM高电平脉宽(trdhfm)

写控制低电平脉宽(twrl)                    写控制高电平脉宽(twrh)

ID:指LCD的ID号                FM指帧缓存即GRAM

FSMC时序中ADDSET和DATAST不需要严格要求,可以使用实践值

 

FSMC地址映射 

使用FSMC外接存储器,其存储单元是映射到STM32的内部寻址空间的。

从FSMC角度看,可以把外部存储器划分为固定大小为256M字节的四个存储块。

FSMC存储块1被分为4个区,每个区管理64M字节空间。(64M Byte = 2^26 Byte)

 HADDRFSMC_A关系

HADDR总线是转换到外部存储器的内部AHB地址线。

简单来说,从CPU通过AHB总线到外部信号线之间的关系。

HADDR是字节地址,而存储器访问不都是按字节访问,接到存储器的地址线与其数据宽度相关。

注意:数据宽度为16位时,地址存在偏移

 LCDRS信号线与地址线关系

8080接口中RS(数据/命令选择线),用FSMC的某根A地址线进行替换。

FSMC_A10接到RS线上

        当FSMC_A10为高电平时(即RS为高电平),FSMC_D[15:0]被理解为数据。

        当FSMC_A10为低电平时(即RS为低电平),FSMC_D[15:0]被理解为命令。

究竟发送什么地址代替?

1、确认FSMC_NE4基地址:       

 0x6C00 0000        NEx(x=1…4):0x6000 0000 + (0x400 0000 * (x - 1))

2、确认FSMC_A10对应地址值

2^10 x 2 = 0x800        FSMC_Ay(y=0…25): 2^y x 2

3、确认两个地址

代表LCD命令的地址:0x6C00 0000

代表LCD数据的地址:0x6C00 0800

FSMC相关寄存器介绍

        对于NOR_FLASH/PSRAM控制器(存储块1)配置工作,通过FSMC_BCRx、FSMC_BTRx和FSMC_BWTRx寄存器设置(其中x=1~4,对应4个区)。

SRAM/NOR闪存片选控制寄存器(FSMC_BCRx 

 EXTMOD:扩展模式使能位,控制是否允许读写不同的时序。读和写用不同的时序,该位设置为1

WREN:写使能位。        向TFTLCD写入数据,该位设置1

 MWID[1:0]:存储器数据总线宽度。00,表示8位数据模式;01表示16位数据模式;10和11保留。

MTYP[1:0]:存储器类型。00表示SRAM、ROM;01表示PSRAM;10表示NOR FLASH;11保留。 

MBKEN:存储块使能位。该位设置1

SRAM/NOR闪存片选时序寄存器(FSMC_BTRx

ACCMOD[1:0]访问模式。00:模式A01:模式B10:模式C11:模式D

DATAST[7:0]数据保持时间,等于DATAST(+1)HCLK时钟周期,DATAST最大为255

对于ILI9341来说,其实就是RD低电平持续时间,最小为355ns

对于F1,一个HCLK = 13.9ns(1/72M),设置为15 (STM32F1的FSMC性能存在问题

对于F4,一个HCLK = 6ns(1/168M),设置为60

ADDSET[3:0]地址建立时间。表示ADDSET(+1)HCLK时钟周期,ADDSET最大为15

对于ILI9341来说,相当于RD高电平持续时间,为90ns

F1即使设置为0RD也有超过90ns的高电平,这里设置为1F4对该位设置为15

        如果未设置EXTMOD位,则读写共用这个时序寄存器!

SRAM/NOR闪存写时序寄存器(FSMC_BWTRx

 ACCMOD[1:0]:访问模式。00:模式A01:模式B10:模式C11:模式D

DATAST[7:0]数据保持时间,等于DATAST(+1)HCLK时钟周期,DATAST最大为255

对于ILI9341来说,其实就是WR低电平持续时间,最小为15ns

对于F1,一个HCLK = 13.9ns,设置为3

对于F4,一个HCLK = 6ns,设置为9

ADDSET[3:0]地址建立时间。表示ADDSET(+1)HCLK时钟周期,ADDSET最大为15

对于ILI9341来说,相当于WR高电平持续时间,为15ns

F1即使设置为1WR也有超过15ns的高电平,这里设置为1

F4对该位设置为8

FSMC寄存器组合说明

        在ST官方提供的寄存器定义里面,并没有定义FSMC_BCRxFSMC_BTRxFSMC_BWTRx等这个单独的寄存器,而是将他们进行了一些组合,规则如下:

FSMC_BCRxFSMC_BTRx,组合成BTCR[8]寄存器组,他们的对应关系如下:

          BTCR[0]对应FSMC_BCR1BTCR[1]对应FSMC_BTR1

          BTCR[2]对应FSMC_BCR2BTCR[3]对应FSMC_BTR2

          BTCR[4]对应FSMC_BCR3BTCR[5]对应FSMC_BTR3

          BTCR[6]对应FSMC_BCR4BTCR[7]对应FSMC_BTR4

FSMC_BWTRx则组合成BWTR[7]寄存器组,他们的对应关系如下:

          BWTR[0]对应FSMC_BWTR1BWTR[2]对应FSMC_BWTR2

          BWTR[4]对应FSMC_BWTR3BWTR[6]对应FSMC_BWTR4

          BWTR[1]、BWTR[3]BWTR[5]保留,没有用到

FSMC相关HAL库函数简介

        本例程涉及HAL库相关函数如下:

HAL_StatusTypeDef HAL_SRAM_Init ( 
SRAM_HandleTypeDef *hsram,
FSMC_NORSRAM_TimingTypeDef *Timing,
FSMC_NORSRAM_TimingTypeDef *ExtTiming )

 SRAM_HandleTypeDef

typedef struct 
{ FSMC_NORSRAM_TypeDef *Instance;				/* 寄存器基地址 */FSMC_NORSRAM_EXTENDED_TypeDef *Extended; 	/* 扩展模式寄存器基地址 */ FSMC_NORSRAM_InitTypeDef Init;				/* SRAM初始化结构体*/ HAL_LockTypeDef Lock; 						/* SRAM锁对象结构体 */ __IO HAL_SRAM_StateTypeDef State; 			/* SRAM设备访问状态 */ DMA_HandleTypeDef *hdma; 					/* DMA结构体 */ 
} SRAM_HandleTypeDef;

寄存器基地址选择:FSMC_NORSRAM_DEVICE

扩展模式寄存器基地址:FSMC_NORSRAM_EXTERNDEVICE

FSMC_NORSRAM_InitTypeDef

typedef struct 
{ uint32_t NSBank; 				/* 存储区块号 */ uint32_t DataAddressMux; 		/* 地址/数据复用使能 */ 	uint32_t MemoryType; 			/* 存储器类型 */ 	uint32_t MemoryDataWidth; 		/* 存储器数据宽度 */uint32_t BurstAccessMode;		/* 设置是否支持突发访问模式,只支持同步类型的存储器 */uint32_t WaitSignalPolarity;	/* 设置等待信号的极性 */uint32_t WrapMode; 			    /* 突发模式下存储器传输使能 */uint32_t WaitSignalActive; 		/* 等待信号在等待状态之前或等待状态期间有效 */ uint32_t WriteOperation; 		/* 存储器写使能 */ uint32_t WaitSignal; 			/* 是否使能等待状态插入 */ uint32_t ExtendedMode; 		    /* 使能或者禁止使能扩展模式 */ uint32_t AsynchronousWait; 		/* 用于异步传输期间,使能或者禁止等待信号 */ uint32_t WriteBurst; 			/* 用于使能或者禁止异步的写突发操作 */ uint32_t PageSize; 				/* 设置页大小 */ 
} FSMC_NORSRAM_InitTypeDef;

 储存区块号选择:FSMC_NORSRAM_BANK4

地址/数据复用功能选择:FSMC_DATA_ADDRESS_MUX_DISABLE

储存器类型选择:FSMC_MEMORY_TYPE_SRAM

储存器数据宽度选择:FSMC_NORSRAM_MEM_BUS_WIDTH_16

储存器写使能选择:FSMC_WRITE_OPERATION_ENABLE

使能或者禁止使能扩展模式选择:FSMC_EXTENDED_MODE_ENABLE

FSMC_NORSRAM_TimingTypeDef

typedef struct 
{ uint32_t AddressSetupTime; 			/* 地址建立时间 */ uint32_t AddressHoldTime; 			/* 地址保持时间 */ 	uint32_t DataSetupTime; 			/* 数据建立时间 */ 	uint32_t BusTurnAroundDuration; 	/* 总线周转阶段的持续时间 */uint32_t CLKDivision;				/* CLK时钟输出信号的周期 */uint32_t DataLatency;				/* 同步突发NOR FLASH的数据延迟 */uint32_t AccessMode;				/* 异步模式配置 */
} FSMC_NORSRAM_InitTypeDef;

这里要配置addressSetupTime地址建立时间和DataSetupTime数据建立时间。

FSMC模拟8080时序读写简化代码

void lcd_wr_cmd(volatile uint16_t cmd){cmd = cmd;*(uint16_t *)(FSMC_ADDR_CMD) = cmd;}
void lcd_wr_data(volatile uint16_t data)
{data = data;*(uint16_t *)(FSMC_ADDR_DATA) = data;
}
uint16_t lcd_rd_data(void)
{volatile uint16_t ram; 	ram = *(uint16_t *)(FSMC_ADDR_DATA);return ram;
}

硬件IO连接关系

相关文章:

初学stm32 --- FSMC驱动LCD屏

目录 FSMC简介 FSMC框图介绍 FSMC通信引脚介绍 FSMC_NWE 的作用 FSMC_NWE 的时序关系 FSMC_NOE 的含义 FSMC_NOE 的典型用途 FSMC_NOE 的时序关系 使用FSMC驱动LCD FSMC时序介绍 时序特性中的 OE ILI9341重点时序: FSMC地址映射 HADDR与FSMC_A关系 LCD的…...

【2025最新计算机毕业设计】基于Spring Boot+Vue影院购票系统(高质量源码,提供文档,免费部署到本地)

作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容:🌟Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…...

Java 内存溢出(OOM)问题的排查与解决

在 Java 开发中,内存溢出(OutOfMemoryError,简称 OOM)是一个常见且棘手的问题。相比于数组越界、空指针等业务异常,OOM 问题通常更难定位和解决。本文将通过一次线上内存溢出问题的排查过程,分享从问题表现…...

Android14 CTS-R6和GTS-12-R2不能同时测试的解决方法

背景 Android14 CTS r6和GTS 12-r1之后,tf-console默认会带起OLC Server,看起来olc server可能是想适配ATS(android-test-station),一种网页版可视化、可配置的跑XTS的方式。这种网页版ATS对测试人员是比较友好的,网页上简单配置下…...

周末总结(2024/01/04)

工作 人际关系核心实践: 要学会随时回应别人的善意,执行时间控制在5分钟以内 坚持每天早会打招呼 遇到接不住的话题时拉低自己,抬高别人(无阴阳气息) 朋友圈点赞控制在5min以内,职场社交不要放在5min以外 职场的人际关系在面对利…...

《Rust权威指南》学习笔记(二)

枚举enum 1.枚举的定义和使用如下图所示: 定义时还可以给枚举的成员指定数据类型,例如:enum IpAddr{V4(u8, u8, u8, u8),V6(String),}。枚举的变体都位于标识符的命名空间下,使用::进行分隔。 2.一个特殊的枚举Option&#xff0…...

Docker 远程访问完整配置教程以及核心参数理解

Docker 远程访问完整配置教程 以下是配置 Docker 支持远程访问的完整教程,包括参数说明、配置修改、云服务器安全组设置、主机防火墙配置,以及验证远程访问的详细步骤。 1. 理解 -H fd:// 参数的作用(理解了以后容易理解后面的操作&#xff…...

在ros2 jazzy和gazebo harmonic下的建图导航(cartographer和navigation)实现(基本)

我的github分支!!! 你可以在这里找到相对应的源码。 DWDROME的MOGI分支 来源于!! MOGI-ROS/Week-3-4-Gazebo-basics 学习分支整理日志 分支概述 这是一个用于个人学习的新分支,目的是扩展基本模型并添加…...

常见的显示器分辨率及其对应的像素数量

显示器的像素数量通常由其分辨率决定,分辨率表示为水平像素数乘以垂直像素数。 720P(1280720): 像素数量:约92.16万特点:这是高清标准的一个分辨率,通常用于手机、平板电脑或小型显示器。900P&…...

浅谈分布式共识算法

分布式共识算法 基础概念1、容错2、共识3、拜占庭将军问题4、多数派5、共识算法分类6、ACID&BASE&CAP Paxos1、相关概念2、三种角色3、运行阶段4、Multi Paxos5、总结6、演化 ZAB1、相关概念2、三种角色3、成员状态4、运行阶段5、ZooKeeper流程6、总结 Raft1、相关概念…...

[Linux]redis5.0.x升级至7.x完整操作流程

1. 从官网下载最新版redis: 官网地址:https://redis.io/download 注:下载需要的登录,如果选择使用github账号登录,那么需要提前在github账号中取消勾选“Keep my email addresses private”(隐藏我的邮箱…...

Vue项目中生成node_modules文件夹的两种常用方法及npm优势

在Vue项目中生成node_modules文件夹的过程非常简单,主要步骤如下: 1、使用 npm 安装依赖包; 2、使用 yarn 安装依赖包。其中,推荐使用npm安装依赖包,原因如下: 兼容性更广:npm是Node.js的默认包管理工具,具有更高的兼容性。社区支持:npm拥有更大的用户基础和社区支持,…...

(四)基于STM32通过Event Recoder实现时间测量功能

目录 1. 了解Event Recorder 2. 硬件和软件准备 硬件需求 软件需求 3. 配置STM32工程 使用STM32CubeMX初始化项目 配置Event Recorder 4. 实现时间记录功能 初始化Event Recorder 时间间隔计算 配置Debug选项 测量结果查看 5总结 在嵌入式系统开发中,精…...

【Linux】定时运行shell脚本

1、at命令 at命令允许指定Linux系统何时运行脚本,它会将作业提交到队列中,指定shell在什么时候运行该作业。 at 的守护进程 atd 在后台运行,在作业队列中检查待运行的作业。 at 守护进程会检查系统的一个特殊目录(一般位于/var/…...

ARM 汇编基础总结

GNU 汇编语法 编写汇编的过程中,其指令、寄存器名等可以全部使用大写,也可以全部使用小写,但是不能大小写混用。 1. 汇编语句的格式 label: instruction comment label即标号,表示地址位置,有些指令前面可能会有标…...

L27.【LeetCode笔记】2 的幂(五种解法)

目录 1.题目 2.自解 方法1:调用log函数 代码 提交结果 方法2:循环 提交结果 3.优解 方法3:位运算n & (n-1) 0 代码 提交结果 方法4:位运算lowbit 代码 提交结果 4.投机取巧的方法 代码 提交结果 1.题目 https://leetcode.cn/problems/power-of-two/?env…...

【MyBatis-Plus】让 MyBatis 更简单高效

如果你曾经使用过 MyBatis,你一定知道它的强大和灵活。然而,随着项目规模的增长,手写 SQL 成为了一件既繁琐又容易出错的事。这时,MyBatis-Plus(简称 MP)应运而生,它为 MyBatis 增强了许多功能&…...

如何使用OpenCV进行抓图-多线程

前言 需求: 1、如何使用OpenCV捕抓Windows电脑上USB摄像头的流、 2、采用多线程 3、获知当前摄像头的帧率。 这个需求,之前就有做了,但是由于出现了一个问题,人家摄像头的帧率目前都可以达到60帧/s 了,而我的程序…...

解决安装pynini和WeTextProcessing报错问题

点击这里,访问博客 0. 背景 最近在给别人有偿部署ASR-LLM-TTS项目时遇到安装pynini和WeTextProcessing依赖报错的问题,报错信息如下: IC:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt" "-IC:\Program Files…...

数据中台与数据治理服务方案[50页PPT]

本文概述了数据中台与数据治理服务方案的核心要点。数据中台作为政务服务数据化的核心,通过整合各部门业务系统数据,进行建模与加工,以新数据驱动政府管理效率提升与政务服务能力增强。数据治理则聚焦于解决整体架构问题,确保数据…...

springCloud 脚手架项目功能模块:Java分布式锁

文章目录 引言分布式锁产生的原因:集群常用的分布式锁分布式锁的三种实现方式I ZooKeeper 简介zookeeper本质上是一个分布式的小文件存储系zookeeper特性:全局数据一致性II 基于ZooKeeper 实现一个排他锁创建锁获取锁释放锁Apache ZooKeeper客户端III 分布式锁方案非公平锁方…...

一文讲清楚HTTP常见的请求头和应用

文章目录 一文讲清楚HTTP常见的请求头和应用1. 啥是个HTTP请求头2. 常见的请求头,作用和示例3.协商缓存4.会话状态 一文讲清楚HTTP常见的请求头和应用 1. 啥是个HTTP请求头 一句话,说白了就是限定HTTP传输的一些规则参数,比如Accept&#xf…...

ImportError: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.32‘ not found

这个问题之前遇到过,没有记录,导致今天又花了2小时 原因是没有GLIBC——2.32 使用以下命令查一下有哪些版本: strings /lib/x86_64-linux-gnu/libm.so.6 | grep GLIBC_ 我已经安装好了,所有有2.32版本 原因是当前的ubuntu版本…...

如何安装适配pytorch版本的torchvision

一、对照版本 版本对照pytorch/vision: Datasets, Transforms and Models specific to Computer Vision 二、下载对应版本的torchvision 下载连接1download.pytorch.org/whl/torch_stable.html 下载连接2download.pytorch.org/whl/cu110/torch_stable.html 笔者认为1会比2更…...

UE4_用户控件_3_用户控件输入数据的方法

祝愿大美兰陵越来越好! 一、效果展示: 二、先制作一个角色 1、新建个父类为pawn的蓝图类。更名为BP_Image_Character。 2、这个角色只是用于观察场景,并与场景中的物体相碰撞用的,所以不需要骨骼网格体, 3、但是我们…...

以往博客的复习补充——part1

之前没更新是因为期末考试要复习,没空写博客。1月3号才考完,现在有空,打算从头看一遍,既是复习以前知识点,又是对原来的博客进行补充。刚好寒假,有大把时间。 一,希尔排序(Shell So…...

数据挖掘——决策树分类

数据挖掘——决策树分类 决策树分类Hunt算法信息增益增益比率基尼指数连续数据总结 决策树分类 树状结构,可以很好的对数据进行分类; 决策树的根节点到叶节点的每一条路径构建一条规则;具有互斥且完备的特点,即每一个样本均被且…...

Kafka 快速实战及基本原理详解解析-01

一、Kafka 介绍 1. MQ 的作用 消息队列(Message Queue,简称 MQ)是一种用于跨进程通信的技术,核心功能是通过异步消息的方式实现系统之间的解耦。它在现代分布式系统中有着广泛的应用,主要作用体现在以下三个方面&…...

大模型在自动驾驶领域的应用和存在的问题

大模型在自动驾驶领域的应用与挑战 大模型(如 GPT-4、BERT等)已经在多个领域取得了突破,自动驾驶是其中一个受益颇多的行业。随着人工智能和深度学习的快速发展,自动驾驶技术正在向更加智能化、自动化和安全的方向发展。大模型在…...

【0x0014】HCI_Read_Local_Name命令详解

目录 一、命令概述 二、命令格式 三、返回事件及参数说明 3.1. HCI_Command_Complete 事件 3.2. Status 3.3. Local_Name 四、命令执行流程 4.1. 命令发送 4.2. 控制器接收并处理命令 4.3. 控制器返回结果 4.4. 主机接收并解析事件包 4.5. 示例代码 五、应用场景 …...

理解Java领域中的 DTO、PO 和 VO

在 Java 开发中,DTO(Data Transfer Object)、PO(Persistent Object)和 VO(Value Object)是在不同层面用于数据处理和传递的概念,它们各自有着独特的作用: 一、DTO&#…...

成都和力九垠科技有限公司九垠赢系统Common存在任意文件上传漏洞

免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…...

框架模块说明 #09 日志模块_01

背景 日志模块是系统的重要组成部分,主要负责记录系统运行状态和定位错误问题的功能。通常,日志分为系统日志、操作日志和安全日志三类。虽然分布式数据平台是当前微服务架构中的重要部分,但本文的重点并不在此,而是聚焦于自定义…...

Unity热更文件比较工具类

打包出来的热更文件,如果每次都要全部上传到CDN文件服务器,不进耗费时间长,还浪费流量。 所以让AI写了个简单的文件比较工具类,然后修改了一下可用。记录一下。 路径可自行更改。校验算法这里使用的是MD5,如果使用SH…...

Python性能分析深度解析:从`cProfile`到`line_profiler`的优化之路

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在软件开发过程中,性能优化是提升应用质量和用户体验的关键环节。Python作为广泛应用的高级编程语言,其性能分析工具为开发者提供了强大的…...

EF Core配置及使用

Entity Framework Core是微软官方的ORM框架。 ORM:Object Relational Mapping。让开发者用对象操作的形式操作关系数据库。 EF Core是对于底层ADO.NET Core的封装,因此ADO.NET Core支持的数据库不一定被EF Core支持。 代码创建数据库Code First 建实…...

EPS32基础篇开发

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 开发 EPS32基础篇 前言一、GPIO输入输出GPIO可设置一下4种状态代码示例:检测按键,按下时:LED亮,松开时,LED灭 二、…...

【时时三省】(C语言基础)常见的动态内存错误2

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 对非动态开辟空间内存使用free释放 示例: 这个arr数组是在栈上的 *p指向的就是arr 对非动态空间也用了free ferr只能在动态开辟空间使用 使用free释放一块动态开辟空间的一部分…...

Harmony OS开发-ArkUI框架速成四

程序员Feri一名12年的程序员,做过开发带过团队创过业,擅长Java相关开发、鸿蒙开发、人工智能等,专注于程序员搞钱那点儿事,希望在搞钱的路上有你相伴!君志所向,一往无前! 1.图标库 1.1 图标库概述 HarmonyOS 图标库为 HarmonyOS 开发者提供丰富的在线图…...

vulnhub Earth靶机

搭建靶机直接拖进来就行 1.扫描靶机IP arp-scan -l 2.信息收集 nmap -sS -A -T4 192.168.47.132 得到两个DNS; 在443端口处会让我们加https dirb https://earth.local/ dirb https://terratest.earth.local/ #页面下有三行数值 37090b59030f11060b0a1b4e0000000000004312170a…...

ScheduledExecutorService详解

ScheduledExecutorService 是 Java 并发工具包 (java.util.concurrent) 中的一个接口,用于在指定的延迟后执行任务,或者以固定的时间间隔周期性执行任务。它是 ExecutorService 的子接口,提供了更强大的调度功能。 ScheduledExecutorService…...

logback日志文件多环境配置路径

项目中遇到问题,springboot项目 本地jar包部署到现场后,经常遇到现场的日志存放的路径会更改,经过查阅,有两种方式,下面简单说明一下。 一、第一种 启动jar包时 添加参数 --logging.configF:\hgtest\config\logback.x…...

判断一个变量是否为NaN

1. JS代码 NaN(不是一个数字,但数据类型为number)是执行数学运算没有成功,返回失败的结果。 另外,NaN 不等于 NaN 。 //利用 NaN 是唯一一个不等于自身的特点 function _isNaN(val) {if (val ! val) {return true;}ret…...

Flask 快速入门

1. Flask 简介 1.1 什么是 Flask Flask 是一个用 Python 编写的轻量级 Web 框架,被誉为 微框架。它提供基础功能,如路由、请求处理和模板引擎,但不强迫开发者使用特定库或工具,赋予开发人员高度的自由选择权,以满足不…...

性能测试03|JMeter:断言、关联、web脚本录制

目录 一、断言 1、响应断言 2、json断言 3、持续时间断言 二、关联 1、正则表达式介绍 2、正则表达式提取器 3、Xpath提取器 4、JSON提取器 5、JMeter属性 三、web脚本录制 一、断言 定义:让程序自动判断实际的返回结果是否与预期结果保持一致 自动校验…...

微信小程序调用 WebAssembly 烹饪指南

我们都是在夜里崩溃过的俗人,所幸终会天亮。明天就是新的开始,我们会变得与昨天不同。 一、Rust 导出 wasm 参考 wasm-bindgen 官方指南 https://wasm.rust-lang.net.cn/wasm-bindgen/introduction.html wasm-bindgen,这是一个 Rust 库和 CLI…...

java_配置使用nacos完整示例

参考:49 尚上优选项目-平台管理端-整合ESMQ实现商品上下架-流程分析_哔哩哔哩_bilibili 1. 下载安装nacos https://github.com/alibaba/nacos/releases 2. 解压,运行 PS D:\path/to\nacos-server-2.4.3\nacos\bin> .\startup.cmd -m standalone 3.…...

Go语言性能优化-字符串格式化优化

在 Go 语言中,格式化字符串(例如使用 fmt.Sprintf、fmt.Printf 等函数)确实可能对性能产生影响,尤其是当频繁执行格式化操作时。格式化字符串涉及对格式符的解析和数据类型的转换,这会增加额外的开销。为了减少格式化字符串带来的性能影响,可以采取以下一些优化策略: 1…...

Spring源码分析之事件机制——观察者模式(二)

目录 获取监听器的入口方法 实际检索监听器的核心方法 监听器类型检查方法 监听器的注册过程 监听器的存储结构 过程总结 Spring源码分析之事件机制——观察者模式(一)-CSDN博客 Spring源码分析之事件机制——观察者模式(二&#xff…...

机器学习和深度学习

机器学习(Machine Learning,简称 ML)和深度学习(Deep Learning,简称 DL)都是人工智能(AI)领域的重要技术,它们的目标是使计算机通过数据学习和自主改进,从而完…...