智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之11 方案再探之2 项目文件(修改稿1)
(以下内容是第二次重建项目(“方案再探”)时的项目附件。)
为AI聊天工具添加一个知识系统
Part1 人性化&去中心化
前情提要
这一次我们暂时抛开前面对“智能工厂的软件设计”的考虑--其软件智能 产品就是 应用程序。直接将这些思维方式和方法论 运用在其具体应用场景中。本文是其中的一个应用场景。
下面是就这一应用场景和“天意ChatGPT”(自称是ChatGPT 4.0 的直通通道)的Q&A。
在现在各种AI聊天工具层出不穷的今天,我觉得特别需要一个通用的AI聊天工具的图形界面能够为每个聊天者(或一个利益相关者组织)建立自己的知识树,并以认知地图为基础,建立从当前节点导航到其它各个知知识树节点的技术能力分析作为连接或运用成熟的计算机技术(后期会包括其他技术)的 指导和辅助,以优化路径为目标,这样一个软件系统。
项目考虑(文字描述)
分三部分:
- 三端架构(this formal:体系结构)--信息处 信息技术上的哲学统一(基础设施:“道”)(哲学<生态>)
- 三层结构(that relational:层次结构)-- 运行时 运行技术上的认知综合(上层建筑:“器”)(科学<组态>)
- 三方系统(the material:市场结构)--运营流 运营技术上的信念分解(应用行规:“形”)(宗教<模态>)
注:这里的文字只是为Part2 预定的 结构化和形式化 任务目的(我将其称为 “备忘录” requests for commentary )以及为part3 智能化和公理化 的设想的理想目标(我将其称为 “备注项”notes on definition ),在Part1中 会完全被忽略--即文字中不对对它们做任何解释 (--“悬置或挂起” 系统外挂“冠名” ,此时 Part1中的文字描述组成即描述项 都是“裸名”) 也不会提及和使用它们(--“免责或除外”功能内嵌“实名” ,此时Part1中出现的文字 都是 “匿名”)。part 1的文字仅仅是此时此刻想问的问题 questions at this moment
三端架构(this formal:体系结构)--信息技术上的哲学统一(基础设施:“道”)
这个软件系统的架构和要求--简单的说一下三端的架构基础和基础任务:
- 前端基于一个组织架构的提供和人类编辑者的交互(语言处理视图),
- 后端基于一个系统架构提供运行代理服务器(计算机网络模型),
- 中间端基于一个微服务架构提供通用属性的适配器(属性通量调节控制:比如,可执行控制指令集 的适用性 和 具有执行能力的设备的 均衡 等等)
前端:三大任务
总说前端
首先说前端。这个软件不需要自己的聊天工具,而是需要设计一个聊天工具的接口,包括通用的 以及和特定聊天工具对接的。前者(通用接口)将生成用户的知识树节点内容模型,后者将可以从特定聊天工具的聊天文字中提取不同级别和分类的主题、不同种类和侧面的关键字等,作为知识树结构和知识树节点内容的根据。
前端的知识树
由于前端表达的是需求,是决定系统是否有用的关键,所以我们先细化一下前端-从知识树开始。知识树 有三种节点:根茎叶。三种节点分别对应 三级主题:广泛主题theme(逻辑等价),狭义主题subject(概念泛化)和语篇主题topic(存在特化)。
同时,
- 有一个内容提供者工具,(比如各种聊天工具作为 chatWindow 实例 )
- 还有一个内容处理程序(自带语言处理器) 首先将一次聊天主题定位到某个节点上,并对AI聊天工具所做的答复进行分析 如果能正确纳入内容则直接添加,如果不能则标明问题扔给语言处理器)。
对前端来说,语言处理器是关键,他将区分AI聊天工具的问和答中的符号学分支关系( 后缀词典词 '~' :语法/语义/语用 <signs>)、语言学分类关系(中缀概念词'|' : 普通代词/一般术语/技术术语 <notes>)以及 根据后端能力给出的工程学分界关系(前缀索引词‘-’: this/that/the <notions> )
补充说明:
在刚才的描述中为前端需要实现一个语言处理器(前端的核心组件),用于处理一个word的三种“缀” (前缀/中缀/后缀,为word附随的元语言注释)并用不同的元级符号(对应的元语言编程符号)表示('-' /'|' / '~')。
语言处理器 作为前端的核心组件,该组件是知识库的“唯一合法居民”。
前端的三种处理器(三分支并行处理)
下面给出前端需要实现的三种处理器--我们先不进行下一步,而是看看“上一步”以及“同行人”(能和“语言处理器”相提并论的三者--并行处理)。
- 上一步 即“知识库”。前面所说,语言处理器作为前端的核心组件,该组件是知识库的“唯一合法居民”。知识库:一个非正式的术语,指包含一个本体作为一个组件的信息集合。除了本体外,知识库还可以包含以声明性语言(如逻辑或专家系统规则)指定的信息,但也可以包含以自然语言或过程代码表示的非结构化或非形式化信息。
- “同行人”--下面简列(前端需要的,包括“语言处理器”在内的三种处理器):
- 1) 树trees(决策) :知识处理器【顿 仪,利益】- 抽取(组织式) 概念图形(operation-运营期间 全生命周期 加载-表征强化 网页页面):实践法则- 经验数据。 直接包括/本质包含/实质蕴含<面face:括号 - 指 手指指示 法线> =>晚期(成熟期)
- 2)列表Lists(选择): 内容处理器【 渐 仪, 玩具】-提取(分析式) 主题词表(develop -开发阶段 戴明环 提炼 -过程精化 属性面板):科学实验 - 实验证据 三方辩论<方side 符号- 索 绳索准绳 准线>: 差异/差别/区分。=>中间过渡期(成长期)
- 3)网络Networks(判断):语言处理器【不定 仪, 武器】-合取(凝聚式) 谓词系统(run-time运行时 路线图 petri网 转换-路径优化 技术板块 ):理论原则-监测数据。 阿尔法α go 治理 (相干性或先行性 AI instrument ),β try 推理 (相应性或因果性深度学习 effector),γ do 代理(相关性或毗连性 机器学习 agent)。 <层hierarchy:引号- 标 标准标架 基线> =>初期(新生期)。
后端:三个系统
由于我们还没有细致讨论 “后端”,所以现在还不完整是必然的。事实上,在“后端”我们同样会发现也需要一个中间层(猜测应该是 “推理系统”和“证明系统”的中间层“句子系统” )。
后端的具体考虑暂缺。
系统的三端架构总述
在此(前端)基础上,我们仍然“反其道而行之”,给出 目标系统的 三端:
- none:break/continue 中间-二无我(“机chance”):main-target 三跟随(本心或本体心 heart)物自体 : 位置/速度/力 。 无“我”的物质形态( 整体是一个 三位一体triad:逻辑表示”notation“ :: 中介“物质subtance”)
- apply 后端-法我(“器machine”) 法身/化身/报身 三主机( 智脑或智能脑 brain): master-portal constructor / host-window builder / home-page editor。 “法”“我”的社会形态(实体三分法trichotomy :语言符号”signs" :: 内嵌'“描述description” )
- new 前端-人我(“线line”):run-time 三新 创新/ 维新/ 革新 三本位(自性或表面心 mind):划时代/新时期,新纪元( (复 文身) - 标点符号(双亲 句身)-偏旁部首(单子 字身)):生产板/开发板/测试板。 “人”“我”的意识形态(本体三元组triple:数学函数 ”元ary“ :: 外插“概念conception”。它直接表示了一个函数的参数个数,如unary, binary, ternary, 和 n-ary。
前端和后端
两个中心词:“概念” 和“描述”
通过上面的考虑我提取出两个 中心词“概念”和“描述”。
- “概念” (侧重于后端)。前面对后端的描述文字:“后端基于一个系统架构提供运行代理服器(计算机网络模型)...apply 后端-法我(“器machine”) 法身/化身/报身 三主机( 智脑智能脑 brain): master-portal constructor / host-window builder / home-page editor。 “法”“我”的社会形态(实体三分法trichotomy :语言符号”signs“)” )
- “描述”(侧重于 前端 )。文档中对前端的描述: “ 基于一个组织架构的提供和人类编辑者的交互(语言处理视图).....apply 后端-法我(“器machine”) 法身/化身/报身 三主机( 智脑智能脑 brain): master-portal constructor / host-window builder / home-page editor。 “法”“我”的社会形态(实体三分法trichotomy :语言符号”signs“) )。
注1:需要根据这些考虑重现 审视 之前的文档中的描述是否准确(指文档中 “本文提要”这一节中的文字)。
三端的“体”性
目前一定还有很多问题,其中一个原因是因为我们只是提出了 三个中间层 的逻辑关系,却没有明确定位和区分 前端/中端/后端 的完整用意--尤其是中端和后端。此外,由于三端自身的性质决定了三个虽然都有“中间”,但由于结构和形式的不同一定会导致“中间” 的“体”不同(“体”性不同)。
在文档中提到,三端本身分别是 整体三位一体triad ,实体三分法trichotomy和本体三元组triple 。
注意,这里三种不同的“体” 是指 整个后端、中端和前端 的,不只是“中间”的。 整体 triad ,实体trichotomy和本体triple 的三位、三分和三元 的中间 那个 就是 三端架构的 “中间区” 的缩影,由于三端架构的“体”性不同,所以语用、语义和语法均不同。
三层结构(that relational:层次结构)--认知综合(上层建筑:“器”)
“中间”断言
中间区断言:research
我的断言:前端和后端的各自的中间层 形成了 research 的两个面,这两个面将由 “中端”的 中间层提供的结合带来结合。
中间“分区”:时间片段、空间片段和时空片段
关于中端 中间层,实际上对整个系统来说 是“待定”。相应的,前端是“否定”后端是“肯定” (即知识系统的三端架构 在对应各自的三个中间层 整体 支撑一个 三支决策 )。 我之前已经设计了这三个“区”(后端/中端/前端的 中间层 surface)的接口类 分别时:StringProcessor ,ModeAdapter,,CaseFilter。注2:需要 考虑可行性。
中间“区”(片段 )的进一步阐明
更明确的描述应该是:
- 后端中间区(整体 triad 的中间“位”缩影---三位一体的支点“位”。 这里比较特殊 ,需要区别中间位是指倒三角的中心点 --“体心”,另外三个顶点是对等的(称为“面心”),但是底下的那个“位”是 支点 ,是整体 triad 的中间“位” 。所以整个结构中这个中间位 对顶上的两位 是 左右分 --一个时空区域对应于一个时空连续流体的区分),
- 中端中间区(实体 trichotomy 的中间“分”缩影 --实体三分法的中间“分”, 空间的上下文),
- 前端中间区(本体 triple 的中间“元”缩影--本体三元组 的中间“元” ,时间的前后分)。
所以 本项目的整个三端架构中,三端的“中间”区分的分别是: 连续流的 时空(频域或邻域或视域)的左右分, 离散词的 空间(空域)的上下分,出现处的 时间(时域)的前后分。
三套“点”的Tagged-Value
统一标记符号(抽象/具象/实象 ):一个九宫格(元语言注释)
进一步,我们将 三端架构的中间区分 统一称为“标注符号” (一个具象的tag), 形成一个三对具有一个公共中心交点的的一个几何结构,具有全部的4个拓扑 特性(对称性、对偶性、连通性和传递性)。这样无论是前端、中端和后端,当我们忽略几何特征以外的所有其他特征时,无论是 左右 时空片段的 还是上下空间片段的或者是前后时间片段,都是一个严格的相对论,它总是一个变( 因变 ),一个动(应变),但中间的那个重合点总是牢牢地将三者相对固定的“栓”住(“稳固性”)---即:每一对总能保证一个正确的tagged-value (实象)作为 “知识”的 三个分量。所有可以依次作为知识系统的基础
然后,在抽象层(抽象元层 --知识库及组件图 )面为 上面具象的定点、变点、动点(具象模型层--语义网络的拓扑图) 对应设计 锚点、拐点、靶点作为 知识系统的监管控一体化的一个全能Supervisor 。同时在实象层面(实象对象层--认知地图的地形图tops)上对应设计应用程序的 (垂类或列式“列簇”)埋点、(斜线或偏序“序积”)插点和切点(横切关注点或横行 “行矢”) 。这样这个项目(为AI两天工具添加一个知识系统)的设计就基本确定了
本质上这个项目整体由三套“点” 形成一个3*3的九宫格来奠基。
三方(the material:市场结构)--运营技术上的分解(应用行规:“形”)
三个词:
软件技术上的分解:描述description(欠科 family) /概念conception(纯种 species)/物质substance(超属genus)
回过头来看。 前面 已经为前端和后端 抽取出两个词“描述” (兼容泛化和特化的 问题描述语言 )和 “概念”(概念整体运作 的公共逻辑语言。名词“信念notion” --兼具个体包容性和集体团结性的整体一致性 “逻辑等价” )。后者可以映射到 带有元语言注释(九宫格)的 一阶理论格(格上自带四个操作符修订,收缩/扩张/类比 ) ,前者可以简化为 带有一个合取操作的谓词系统(谓词“描述”)。现在还缺中端以及后端的完善。
在为前端和后端 锁定的两个中心词“概念”(命题“作文”的 程序 公共逻辑语言 )和“描述”(谓词“描述” 的 自然 描述语言)的基础上 ,暂时将中端的中心词 锁定在“环境” (情境 “意义”的人工语义网络语言 )。三者的共同性--都需要通过“演算”得到(命题演算/谓词演算/情境演算 )。每种演算 都以本地或局部的 this此岸为输入(A-box,最初是一个条件分支符--条件表达式),远处或全局的彼岸that(T-box。最终是一个原因操作符--执行程序)为输出,中间负责演算的是两个box的连接器(最初是一个 深信不疑的具有自明性的 原语名相(连接弧)通过演算 可能被重新认识或转变为不可信--断开 。或者反过来)
补充:一个条件分支符--条件表达式,一个原因操作符--执行公式,一次推理链接符 --理由陈述句。
进一步阐明:演算 整体上是一个 “bank” 的词扇 。
到现在为止,这个项目设计 是不是基本上可以 进入实现阶段了,或者说在设计阶段该考虑的问题已经考虑的差不多了。最后的演算词扇 为程序设计的 基础。
统一分解和综合: 认知科学的两个内部奠基和三个外部影响
一个符号signs理论是认知科学的适当基础。
认知科学包括哲学,心理学,语言学,人类学,神经科学和人工智能。有人建议神经科学有一天可能为其他分支机构提供合适的基础,而另一些人则建议人工智能可以。但是,这两种观点都是错误的。神经科学和人工智能对其他分支机构也产生了深远的影响。然而,它们两个都受到研究study 认知的外部影响的分支的指导:心理学,语言学和人类学。由于可以从不同的角度研究同一主题topics ,因此认知科学从本质上讲必须是跨学科的。
附注:语言的三级主题(根茎叶)
- Theme:根级 --更广泛主题( NCG最内层嵌套--服务器端session。位于运行时路线图。形式逻辑专项 )
- Suject:茎干级--更狭义主题(客户端cookie 。数理逻辑专项)
- Topic: 叶子级--语篇主题亦即 AI聊天工具的每次新建的一次聊天的主体,使用一个内容模型附加在知识树的末级节点上(NCG的 最外层嵌套 --用户端token。辩证逻辑专项)。要求:动态更新
嵌套概念图 NCG。
概念整体运营逻辑的三个专项运营逻辑,--Term :表征论的意向相关项
三个统一(外部影响- :心理学/语言学/人类学/)
语言文化中的统一:indexical/conceptual/lexical
在我之前的设计中,将三端的中心词确定为 (统一在语言学中 ) 分别是 概念词 conceptual (直接表述--明示。是一个个体自明性约定 或者一个组织 为了共识而达成的规定 ,由文本解释者将泛化概念聚合为分类specified叙词库 --vocabulary)、 词典词lexical(实质蕴含-- 暗示, 是语言和语言所表达的知识之间的桥梁。由词典编纂者分析一个上下文引文的语料库以及在词典、叙词表和术语表中列出语言习惯。--dictionary)、 索引词indexical(本质包含--揭示 ,揭示隐藏在简单的文本或协议之后的复杂性。由逻辑描述者组织为一个左右式公式的术语库 glossary )。 (以上对三种词的描述比较随意,只是为了大致了解它们的立意)。 现在讨论一下是否合理以及程序中如何表示。
注4:这里的话题还缺一个,应该是 “认知科学中的综合”。 三者分别研究三种差异: 系统差异/文化差异/随机差异。
文字解释及其描述格式
上面在分别讨论确定在这个项目中,前端、后端和中端 讨论时 我使用的格式探讨 使用AI聊天工具的 提问者应该怎样描述问题。
希望能根据问题描述文字“猜”出 该描述的 格式、形式、用意等的全部,确保每一个部分都被收集在您给出的描述项中 并指出 有问题或不明确的地方。
问题描述格式分析
前面说过,问题描述除了”自述“形式,还有”资源描述“形式。下面先看前面给出 目标系统的 三端:
- none:break/continue 中间-二无我(“机chance”):main-target 三跟随(本心本体心 heart)物自体 : 位置/速度/力 。 无“我”的物质形态( 整体是一个 三位一体triad:逻辑表示”notation“ )
- 2.apply 后端-法我(“器machine”) 法身/化身/报身 三主机( 智脑智能脑 brain): master-portal constructor / host-window builder / home-page editor。 “法”“我”的社会形态(实体三分法trichotomy :语言符号”signs“)
- 3.new 前端三新-人我(“线line”):创新 维新 革新 三本位(自性 mind):划时代,新时期,新纪元( (复 文身) - 标点符号(双亲 句身)-偏旁部首(单子 字身)):生产板/开发板/测试板。 “人”“我”的意识形态(本体三元组triple:数学函数 ”元“。注:暂时没有找到合适的英文单词,它表示一个函数的参数个数,如unary, binary, ternary, 和 n-ary)
首先,我们看看 source的“自述” (比较严格)和resource的“描述” (相对随意)在格式、形式、结构等的相关描述项中是否一致或者有什么直接关系。这需要先正确给出两者的描述 项 之后再分析。
实际上我是希望通过讨论 完整给出“描述”的描述项,包括不同级别,不同侧面,不同方面及其评估标准和手段。
实际上我是希望通过讨论 完整给出“描述”(这里 具体针对 提问者的问题描述--为的是更好的使用各种AI聊天工具。因为本项目就是“为AI聊天工具添加一个知识系统”)的描述项,包括不同级别,不同侧面,不同方面及其评估标准和手段。
前面我们就在和AI聊天工具的Q&A中如何描述问题(source的自述文件 ),以及如何评判问题回复(resource的描述文件)的质量 并试图通过将其作为内容提供者,通过前端的三种处理器(内容/知识/语言 处理器) 来建立 聊天者的知识树,同时通过 知识系统的三端架构 来提供导航和路径优化能力。两者分别和 两种描述文件有关。
两种描述文件
下面我们继续讨论两种描述文件的形式。我觉得,source(Type() 的类元 )的自述文件 应该被设计为 脚本模板,模板中的“槽” 是 前述 通用接口(用来建模知识树),“槽”通过一个函数式语言声明来陈述 知识树的三种节点;resource的描述文件 应该被设计为一个灵活的模块化框架,要求三种处理模块(分别用来处理 内容/知识/语言。对应三个接口类: 特定聊天工具接口的行为接口、知识树建模的结构化接口,词典编纂的规格接口 )分工协作完成 对聊天过程的帮助和支持 以及知识系统的建立和导航。
补充:source(Type() 的元类metaClass--元语言注释 )的自述文件 应该被设计为 脚本模板,模板中的“槽” 是 前述 通用接口(用来建模知识树),“槽”通过一个函数式语言声明来陈述 知识树的三种节点;resource(Class()的类元 classifier --元数据仓库)的描述文件 应该被设计为一个灵活的模块化框架,要求三种处理模块(分别用来处理 内容/知识/语言。对应三个接口类(Meyhod()的 元编程--元推理技术): 特定聊天工具接口的行为接口、知识树建模的结构化接口,词典编纂的规格接口 )分工协作完成 对聊天过程的帮助和支持 以及知识系统的建立和导航 。
基于这一要求,我们将这个描述进行分层。分三层: 元语言层/模型控件层/对象组件层。每一个层 都有两面side(一面定义软件技术源码source的SPI --技术板块中的-“资源描述文件”,一面声明业务资源resouce的API --网页主页中的--“自述文件”。 独立的两面 )。 显然三种处理器是 对象组件层面上的。根据前面的文字,侧重点是描述 “前端的三种处理器(三分支并行处理)”自身,亦即 应该是“自述文件”,所以我们可以反推出 在对象组件层上 的“自述文件”的描述格式应该有哪些描述项。
分析:我将这个过程称为“反推”。也就是根据文字内容,推出 描述格式的方法。这里”推“法 主要关注内部描述项(即”自述“),而将外部描述项一带而过(基本都会忽略”引入“ 的”背景“ 和 ”前景”,一般仅会简单地 ”取景“ ,并且很不准确很随意)。另外,您对“取景”解释不准确。“取景”指的是 “我”所关注的那部分,剩下的”景“ 才是”背景“和”前景“,之所以能”取景“的原因是”背景“的衬托,我之所以去这样”取景“ 是因为 我有某种愿景。
基于这些考虑--这里指“自述文件”的描述格式,我们选择前面描述文字中最完整的 一行(“3)网络Networks(判断):语言处理器【秘密 仪, 武器】-合取(凝聚式) 谓词系统(run-time运行时 路线图 petri网 转换-路径优化 技术板块 ):理论原则-监测数据。 阿尔法α go 治理(相干性或先行性 AI instrument ),β try 推理 (相应性或因果性深度学习 effector),γ do 代理(相关性或毗连性 机器学习 agent)。 <层hierarchy:引号- 标 标准标架 基线> =>初期(新生期)。”)来看,请给出其描述与格式,然后对比另外两种处理器进行差异分析,并进一步给出一个基本猜测:本来就不同还是 描述不完整有待完善。
这里再次强调:我们是在讨论如何从问题描述文字中 反推出该问题属于哪一层 上的哪一类问题,并进一步推论出该问题描述文字是否准确、完备和全面。基于这些分析,试图能为提问者提供提问指导。
信念: notion 和belief
公理化:“名相”的自明性约定 及 动态组织社区的 共识
这儿还需要有一个共识,就是当一个“名相”(说明:在描述文件中被描述的所有 您的统称)不被用来描述“别人”时,那么,对提问者来说,他就是一个“原语”--不再需要描述的文字,这就意味着 对”提问者“来说, 有已知确定的解释 或者 用法 或者被实现了的。总之,”提问者“确信他”认识“这个东西---尽管可能不是共识。
这里还需要树立一个信念notion(“自明性”约定),就是当一个“名相”(说明:在描述文件中被描述的所有 文字的统称 ,它应该覆盖并不重复覆盖一个提问中的所有单词、词组或短语 )不被用来描述“别人”时,那么,对提问者来说,他就是一个“原语”--不再需要描述的文字,这就意味着 对”提问者“来说, 有已知确定的解释 或者 用法 或者被实现了的。总之,”提问者“确信他”认识“这个东西---尽管可能不是共识。
这里所说的”信念notion(“自明性”约定)“ 正是建立个人知识库和词典库的基础,在此基础上,当多个”个人“组织为一个”利益相关者组织“时,就可以利用他们来虚构一个能”共识“的社区语言。或者反过来,通过虚构一个社区语言来 找到 可以被组织到一个特定“利益相关者组织”中的“个人”
形式化:三支决策
逻辑:
公约
程序
描述文字的具体格式:使用的陈述格式及区分的不同文字块
Source的“自述”
前端:问题描述语言
本文继续完善 “描述” ---现在我们应该可以将它称为 “问题problem描述语言 ”。 它 通过对话框的question 引发 表征的issue 的“涌现” 最终 厘清应用程序的“problem”。即它合并了 ISO七层模型中的上面三层,通过将三层 分别形成 Token/Cookie/Session(三种open-end 端 :中间 --这里应该被设计为用户界面 完成人机交互 /客户端/服务器端) 而构造一个 三嵌套上下文来建立graph(概念图)的三个不同实例 。
整个知识系统目的是为了 让 整个系统 在保证对内逻辑自洽(“逻辑”语言---“概念” 整体运作 ,待讨论)的基础上对外灵活方便( “描述” 语言,现在讨论的问题)。--- 对内逻辑自洽,对外灵活方便。
“反推”和“反证” 及其中间层
到现在为止(前端),这个三嵌套是从最外层向最内层 渗透的,前面说过这是一个 “反推”过程(也可以叫“猜”)并且这个反推 是以 “描述”语言 为基础的。反过来,呈现给使用者(这主要指 提问者)的如果不能被理解,那么就需要被修正(这个过程 我暂且称为“反证”--因为只有否定结论)。 这样的话,“描述”语言 及其程序设计 需要一个中间层来保证"反推"和"反证"的相互作用和效果。
特殊块:“【】”中的文字块
在这些文字的解释中,被讨论忽略了的“【】”中的文字块。
我们这一次的讨论围绕着 "描述“ (比如 一次提问的文字 的描述文字和描述格式和形式等),以期能找到 问题描述 的准确性、完备性和全面性(这三者都是自然语言比较薄弱的环节)。
前面主要是对”自述“ 部分的分析。 刚才在”【】“中的”仪“ (有”仪表“的意思)本质上都是”source“,并分别描述了”source“的三个subtype:effector,instrument,和agent。(原文字中有说明)。其中只有”Instrument“ 的字面义(指称或外延,明示或直接包括)和”仪“一致。 而 ”agent“和”effector“ 分别是”source“的引申义(内涵-暗示 或实质蕴含)和深层义(隐喻 或 本质包含)。
Resource的“描述 ”
一些补充
在为前端和后端 锁定的两个中心词“概念”(命题“作文”的 程序 公共逻辑语言 )和“描述”(谓词“描述” 的 自然 描述语言)的基础上 ,暂时将中端的中心词 锁定在“环境” (情境 “意义”的人工语义网络语言 )。三者的共同性--都需要通过“演算”得到(命题演算/谓词演算/情境演算 )。每种演算 都以本地或局部的 this此岸为输入(A-box,最初是一个条件分支符--条件表达式),远处或全局的彼岸that(T-box。最终是一个原因操作符--执行程序)为输出,中间负责演算的是两个box的连接器(最初是一个 深信不疑的具有自明性的 原语名相(连接弧)通过演算 可能被重新认识或转变为不可信--断开 。或者反过来)
一个条件分支符--条件表达式,一个原因操作符--执行公式,一次推理链接符 --理由陈述句。
进一步阐明:演算 整体上是一个 “bank” 的词扇 。
到现在为止,这个项目设计 是不是基本上可以 进入实现阶段了,或者说在设计阶段该考虑的问题已经考虑的差不多了。最后的演算词扇 为程序设计的 基础。
根据所有讨论和文档给出了修正稿。
后续考虑
我将根据这些讨论整理一份 完整的 描述文字 写成一份文件(修改稿),然后根据文档逐条问答 。同时,从第一个问题开始就建立一个项目程序文件,后面每一条都对逐步修补,最终到问题结构,程序结构也设计完成。
在整理这份修改稿的过程中我将 审视每一个部分,对存疑部分 进行针对性的提问。但必须保证问题具有恰当程度的针对性。如何做到这一点是个问题。
另外提问有两种方法:一是在文档中的相应文字直接列出问题--如果位置明确的话(因为此时问题 和上下文文紧密相关),二是 想到问题就问(这时组织问题语言本身是个问题--英文离开了上下文),根据回答去调整文档的结构和内容。估计 这两种方式 会结合使用。
需要就这两种问题的提问方式约定一个格式。
最后,还需要全面分析前面所有的文档和讨论,对这个项目的可行性以及工作量 和开发难度进行了评估。
Part2 结构化&形式化
(以上是前期考虑到的,下面是为了整理项目文档提出的问题)
特定域模板的 hoc结构
它是特定域模板的 hoc结构。在三端架构中 描述 前端执行公式 的“体”性( body )
特定域模板的 hoc结构(为本项目actors 剧本: 脚本模板)。
祖传代码脚本模板<head><body><boot>中的<body>--一个div标签的内容模型,在三端架构中 描述前端执行公式 的“体”性。
- 集群类clustering 组织式 一个动态社区 百科全书式 循环往复的knowledge组织 (因变或-- 自由创新 尝试自由创新(人工的 主体客体性) 自由意志 )pro hoc
- 分类classification 分析式 一个 内在: 劳动结晶式 动静一源source的分析 (应变或 机会chance--随机应变 自主自立(人为的 - 客体主体性) 自主意识) post hoc
- 聚合类aggregated凝聚式 一个 因果 始终如一的resource和合积聚 ( 不变或连续流统 -以不变应万变 探索自然规律-准绳 间性 自然意念)ad hoc 临时传输方案
特定于领域的模板--一个三套接的hoc结构。这是今天讨论的内容。它是本项目actors 剧本 原型。其地位: 祖传代码脚本模板<head><body><boot>中的<body>--一个div标签的内容模型,在三端架构中 描述前端执行公式 的“体”性。 目的是准备完善出该项目。希望的做法是:我将我给出的附件文档中零散的一些考虑 组成出完整的 描述文字 --写成一份文件(修改稿),然后根据文档逐条问答 。同时,从第一个问题开始就建立一个项目程序文件,后面每一条都对逐步修补,最终到问题结构,程序结构也设计完成。
先完成第一步(“我将从您的附件中提取出与项目相关的内容,整理出初步结构,包括关键术语、模块划分以及相关背景信息。如果需要,我也可以提供一个模板来组织这些信息。”)。包括模板。
“三端架构” 是对项目 做的横切。三种不同的“体”(整体 triad ,实体trichotomy和本体triple) 是指 整个后端、中端和前端 的。 整体 triad ,实体trichotomy和本体triple 的三位、三分和三元 的中间 那个 就是 三端架构的 “中间区” 的缩影,由于三端架构的“体”性不同,所以语用、语义和语法均不同。” 意思是:
以三端架构为“体”,三层结构则描述这些“体”的“性”,并强调了“中间层” 的“分区”:中间“分区”:时间片段、空间片段和时空片段 关于中端 中间层,实际上对整个系统来说 是“待定”。相应的,前端是“否定”后端是“肯定” (即知识系统的三端架构 在对应各自的三个中间层 整体 支撑一个 三支决策 )。 我之前已经设计了这三个“区”(后端/中端/前端的 中间层 surface)的接口类 分别时:StringProcessor ,ModeAdapter,,CaseFilter。注:需要 考虑可行性。
在对项目的水平横切 和垂直划分的基础上,后面还给出了 两者的 合取以及合取形成的“序积” 。最后还在此基础上,将 九宫格顶上的 列簇和 旁边的行矢 以及由 两者 推进的 偏序(序积) 在一个齐次空间中平展为 三种消费者模式(行式、列式和行列一体式),并由Borker 为他们配套 不同的生产者producer。这一部分的设计 的关键 就是今天讨论的内容--“特定于领域的模板--一个三套接的hoc结构”。文档中 作为part2--待讨论完善的部分,也是 项目文档的根据
祖传代码脚本(元语言注释模板)中 主要部分的<body>需要同时考虑--用不同的符号集:1) 水平横切(行矢)和垂直划分(列簇) (需要设计一个类似元素周期表的分类标准standard 来完成分类classification ) 以及 2) 共同推进的序积(需要设计一个 类似双面神结构的 分界准则criterion 完成 聚合 ) 形成的 3)九宫格 ( 三套点 。齐次空间中的三类消费者,需要一个类似圣灵三角形--表示“是”/不是 的倒三角来是定义“名相”--文档中有介绍 ,是逻辑合适的全部描述项 ),最后,为消费者配套不同生产者的broker 需要一个类似petri net的 过程规格specification来完成 集群--这个在是今天讨论的Part 2中的待完善内容。 换句话说,我们的讨论最终要让所有 的一切 各就各位并为其准备就绪提供帮助和指导。
补充一下我前面给出的文字中和结构化和形式化有关(实现有关)的三处:
- 1)分类标准 为 元素周期表中每一个元素类 (a-dot“独角兽”--比喻“能动”--动物。知识库的 ‘Component ’ )制定标准,
- 2)分界准则为聚合在 知识树上的每一个节点 (two-side “双面神” 比拟“能活”-活物 知识原则‘Compose’)规定 特征点的选择依据以及特征评估的准则,
- 3)过程规则指导网络集群中的每一台机器(tree-edge“圣灵三角性”象征“能生” --生物,知识 内容‘Correlaive’)如何工作或执行指令。
‘’中的三个是观察者观察实体的三种不同方式,是第一性、第二性、第三性的“现状”观察者一个三位一体triad。
我们先撇开这些细节,仍是“反其道而行之”, 看看能不通过认识“Firstness/Secondness/Thirdness” 来锁定 问题(本项目的中心问题)。 首先假设:三者是我们前述的三层结构的中间层 缩影,初始断言是这个中端(无我)中间层(“待定” 时空片段)在文档要求被分析为不能再分的实体, 而对编程来说,就是一阶逻辑形式“Term”(定义一阶逻辑公式语法的形成规则之一)的 项目projection模型 (数学背景是 模型理论--符号逻辑 symbolic logic形式化(形而上学)理论的范畴)同时明确,这个中间层的提出,这是作为构建两边的中心基础而被提出来的。
说到这里,还需要补充一点,“知识” 兼具三者: “能动”(知识会不断进化)、“能活”(知识是一个有机组织)和“能生”(知识可以转化为生产力)
所以,我设计分别用 ”电话簿“、”户口簿“和”账簿“ 来分别记录 知识兼具的 三项全能( “能动”、“能活”和“能生”)
用自然语言来说 三者分别是: 离散词(概念词--知识点:语言中所表达的知识 )、出现处(词典词 --运营处:两者之间的桥梁)、连续流(索引词-信息项 :人们用语言 进行交流的信息)。
前者(三种簿册)可以视为官方应建立的正式的标准(制定),后者(三个词组)是民间事实上的标准(收集和调查)。
再简单一点:所谓官方的,实际上就是 fomal的,它以能得以观测执行为基础, 所谓民间的,可以记为normal,它以面对它的人 能理解为目的。
对程序设计而言:前者基于一个自上而下的 分类体系--(生物遗传基因),后者者需要一个收集差异的自下而上的差异继承路径--(系统继承源流)
就是 广义和狭义 分类学。
共性对齐 和 差异收集 正是两者的不同任务
剩下的就是 为两者 归纳 适用的 应用场景。 这项工作 是 为caseFilter规定的任务。
在项目文档中 给出的三个接口类(StringProcessor,ModeAdapter和CaseFilter。Part 1的重点。)正是用来解决本项目的三大类(Clustering ,Aggregated和Classification。Part 2的重点 )问题的。其中,Part 1 文档中已有很多考虑,但Part 2是今天在准备将Part 1中零散 考虑 进行结构化整理时 提出了 祖传代码的三部,其中间的<body>时,提出了件的讨论题目“特定域模板的 hoc结构“。其地位是祖传代码脚本模板<head><body><boot>中的<body>--一个div标签的内容模型,在三端架构中 描述前端执行公式 的“体”性。
对”体“性的理解很重要。<body> 就是”体“,不是”体“性。 Part 1的三个接口才会考虑”体“的“性”,在Part 1中 是 通过 ”中端“的”中间层“ 来描述的:(原文节选如下) 中间“分区”:时间片段、空间片段和时空片段 关于中端 中间层,实际上对整个系统来说 是“待定”。相应的,前端是“否定”后端是“肯定” (即知识系统的三端架构 在对应各自的三个中间层 整体 支撑一个 三支决策 )。 我之前已经设计了这三个“区”(后端/中端/前端的 中间层 surface)的接口类 分别是:StringProcessor ,ModeAdapter,CaseFilter。注2:需要 考虑可行性。
中间“区”(片段 )的进一步阐明 更明确的描述应该是: 后端中间区(整体 triad 的中间“位”缩影---三位一体的支点“位”。 这里比较特殊 ,需要区别中间位是指倒三角的中心点 --“体心”,另外三个顶点是对等的(称为“面心”),但是底下的那个“位”是 支点 ,是整体 triad 的中间“位” 。所以整个结构中这个中间位 对顶上的两位 是 左右分 --一个时空区域对应于一个时空连续流体的区分), 中端中间区(实体 trichotomy 的中间“分”缩影 --实体三分法的中间“分”, 空间的上下文), 前端中间区(本体 triple 的中间“元”缩影--本体三元组 的中间“元” ,时间的前后分)。 所以 本项目的整个三端架构中,三端的“中间”区分的分别是: 连续流的 时空(频域或邻域或视域)的左右分, 离散词的 空间(空域)的上下分,出现处的 时间(时域)的前后分。 --节选结束。 (从我们的讨论可以看出,part 2 的核心就是如何标准化 以及怎样定规则(纯粹理性层面上),Part 1的核心就是大家在怎样做以及为什么等(实践理性上) )
补充:”三端架构中的三种“中间区“ : l后端 体心-肉团心 heart ( 充当的form-purpose pairing的map 契约的条件--身份线。 需要收集整理成一个事实上的标准--符合物理规律的 :norm ) l中端 元心 --心物一元 的 psyche (需要一个人工心理代理Agent 来约定形式化mapReduce步骤的智能合约的资格 --等号线。 要求制定一个正式标准或法律标准--符合整体利益的 :form) l前端 面心- 表意心 mind(作为form-meaning pairing的自明性约定--规约的修饰符 --边框线。 需要事先规定一个 文档或上下文 标准 --迎合大众喜好的:term ); 上面不同的“心”分别带者不同的规则 :映射规则(陈述原子句的组织机制)、投影规则(描述项Term 的项目模型 ) 、和转换规则(阐述执行公式的调用策略)
Part3 智能化&公理化
数学背景:模型理论(Game Graphs)-语言游戏
三个中心词对应的数学表示:
- n-ary 函数参数arg 个数: 数字number。“物质substance”
- n- adic谓词符号 symbol : 算符operator。 “描述description”
- n-tuple state标记 flag < p1,...,pn>: 量词quantifier。“概念conception”
人工智能中的程序program使用树trees和图graphs来表示游戏。象棋、跳棋和tic-tac-toe可以用有向图来表示,有向图的节点表示游戏的位置或状态,其弧表示从一个状态到另一个状态的移动。一个完整的游戏,称为游戏路径,是从一个开始状态到一个结束状态的定向行走,它决定了一场胜利、失败或平局。
模型理论--游戏理论的语义,介绍一种常见的博弈类型,称为两人零和完全信息博弈(two-person zero-sum perfect-information games)--零和游戏。它们被称为两人游戏,以区别于许多玩家的扑克等游戏;它们是零和游戏,因为一个玩家输给另一个玩家的任何东西都会赢(区别于负和游戏,在负和游戏中,机构house是一个削减(takes a cut)或正和游戏,在正和游戏中创造了新的价值);它们是完美的信息游戏,因为每个玩家都可以随时看到完整的状态(区别于扑克或桥牌,其中隐藏了一些最重要的信息)
- 状态 同一性 评估函数( 身份标识符 条件表达式 )身份线 恒等于 逻辑等价
- 事件 唯一性 截断 执行公式(本体 句子成分资格符 )边框线 约等于 存在特化
- 弧 赋值语句(实体 修饰符 )等号线 等于 概念泛化
按照游戏理论的语义,每个公式p都会确定一个两人零和的完美信息游戏-由Game Graphs所定义的。评估游戏中的两个参与者是提议者(通过显示p为真而赢得游戏)和怀疑者(通过显示p为假而赢得游戏)。在玩游戏时,两个玩家根据以下规则从外向内分析p。规则通过删除量词和布尔运算符来简化公式p,直到公式简化为单个原子为止。
相关文章:
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之11 方案再探之2 项目文件(修改稿1)
(以下内容是第二次重建项目(“方案再探”)时的项目附件。) 为AI聊天工具添加一个知识系统 Part1 人性化&去中心化 前情提要 这一次我们暂时抛开前面对“智能工厂的软件设计”的考虑--其软件智能 产品就是 应用程序。直接将这些思维方式和方法论 运…...
Android 系统 Activity 系统层深度定制的方法、常见问题以及解决办法
Android 系统 Activity 系统层深度定制的方法、常见问题以及解决办法 目录 引言Activity 系统层概述Activity 系统架构图Activity 系统层深度定制的方法 4.1 自定义 Activity 生命周期4.2 自定义 Activity 启动流程4.3 自定义 Activity 转场动画4.4 自定义 Activity 窗口管理4…...
java并发之BlockingQueue
种类 类名特性ArrayBlockingQueue由数组结构组成的有界阻塞队列LinkedBlockingQueue由链表结构组成的有界的阻塞队列(有界,默认大小 Integer.MAX_VALUE,相当于无界)PriorityBlockingQueue支持优先级排序的无界阻塞队列DelayQueue…...
Python AI 教程之五: 强化学习
强化学习 强化学习:概述 强化学习 (RL) 是机器学习的一个分支,专注于在特定情况下做出决策以最大化累积奖励。与依赖具有预定义答案的训练数据集的监督学习不同,强化学习涉及通过经验进行学习。在强化学习中,代理通过执行操作并通过奖励或惩罚获得反馈来学习在不确定、可…...
uniapp——App下载文件,打开文档(一)
uniapp如何下载文件、打开文件 文章目录 uniapp如何下载文件、打开文件下载文件下载文件成功返回数据格式 打开文档处理 iOS 打开文件可能失败问题 相关API: uni.downloadFileuni.openDocument 注意: 只支持 GET 请求,需要 POST的ÿ…...
【信息系统项目管理师】高分论文:论信息系统项目的沟通管理(监控更新改造项目)
更多内容请见: 备考信息系统项目管理师-专栏介绍和目录 文章目录 论文1、制定沟通管理计划2、管理沟通3、监督沟通论文 2017年8月,我作为项目经理参加了某省委党校校园监控更新改造项目的建设,该项目投资共500万元人民币,建设工期为3个月,通过该项目的建设,实现了安全防…...
鸿蒙应用开发(1)
可能以为通过 鸿蒙应用开发启航计划(点我去看上一节) 的内容,就足够了,其实还没有。 可是我还是要告诉你,你还需要学习新的语言 -- ArkTS。 ,ArkTS是HUAWEI开发的程序语言。你需要学习这门语言。这会花费你…...
基于JavaWeb的汽车维修保养智能预约系统
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,…...
CAN总线波形中最后一位电平偏高或ACK电平偏高问题分析
参考:https://zhuanlan.zhihu.com/p/689336144 有时候看到CAN总线H和L的差值波形的最后一位电平会变高很多,这是什么原因呢? 实际上这是正常的现象,最后一位是ACK位。问题描述为:CAN总线ACK电平偏高。 下面分析下原因…...
高等数学学习笔记 ☞ 无穷小与无穷大
1. 无穷小 1. 定义:若函数当或时的极限为零,那么称函数是当或时的无穷小。 备注: ①:无穷小描述的是自变量的变化过程中,函数值的变化趋势,绝不能认为无穷小是一个很小很小的数。 ②:说无穷小时…...
Docker Compose编排
什么是 Docker Compose? Docker Compose 是 Docker 官方推出的开源项目,用于快速编排和管理多个 Docker 容器的应用程序。它允许用户通过一个 YAML 格式的配置文件 docker-compose.yml 来定义和运行多个相关联的应用容器,从而实现对容器的统一管理和编…...
Node.js 处理 GeoPackage 数据的开源库:@ngageoint/geopackage介绍
使用 Node.js 处理 GeoPackage 数据的开源库:@ngageoint/geopackage 随着地理信息系统(GIS)和空间数据的广泛应用,OGC 的 GeoPackage 格式因其轻量、跨平台和高性能的特点,成为处理地理空间数据的重要工具。而对于 Node.js 开发者来说,@ngageoint/geopackage 是一个功能…...
21.<基于Spring图书管理系统②(图书列表+删除图书+更改图书)(非强制登录版本完结)>
PS: 开闭原则 定义和背景 开闭原则(Open-Closed Principle, OCP),也称为开放封闭原则,是面向对象设计中的一个基本原则。该原则强调软件中的模块、类或函数应该对扩展开放,对修改封闭。这意味着一个软件实体…...
MySQL日志体系的深度解析:功能与差异
优质博文:IT-BLOG-CN 一、binlog binlog记录数据库表结构和表数据变更,比如update/delete/insert/truncate/create,它不会记录select。存储着每条变更的SQL语句和XID事务Id等等。binlog日志文件如下: [root192.168.10.11]# mysq…...
电商项目-数据同步解决方案(四)商品下架同步更新ES索引库数据
商品下架索引库删除数据 一、 需求分析和业务逻辑 商品下架后将商品从索引库中移除。 主要应用技术有: 消息队列-RabbitMQ ,分布式搜索引擎-ElasticSearch,Eureka,Canal,Feign远程调用 (1)在…...
Kafka
目录 一、什么是Kafka 核心组件 特性 使用场景 安装与配置 二、Kafka的使用 安装 ZooKeeper 和 Kafka 安装 ZooKeeper 安装 Kafka 配置 ZooKeeper 和 Kafka 配置 ZooKeeper 配置 Kafka 启动 ZooKeeper 和 Kafka 创建 Topic 编写生产者代码 编写消费者代码 运行…...
SAP SD学习笔记22 - VF04,VF06,VF24 等一括请求处理
上一篇学习了请求传票(发票)的拷贝管理。 SAP SD学习笔记21 - 请求传票的数据流(拷贝管理)-CSDN博客 本章继续学习 SAP SD的内容。 目录 1,VF04 - 一括请求处理(开票到期清单) 2,…...
JR-RLAA系20路模拟音频多功能编码器
JR-RLAA系20路模拟音频多功能编码器 产品特色 (1)工业级19英寸标准设备,内置双电源 (2)内嵌Web Server,支持远程Web页面登陆后的统一配置操作 (3)支持20路音频输入 (4)支持Dolby Digital(AC-3) ,MPEG-2,AAC-LC/HE-AAC&#x…...
数据结构复习 (二叉查找树,高度平衡树AVL)
1.二叉查找树: 为了更好的实现动态的查找(可以插入/删除),并且不超过logn的时间下达成目的 定义: 二叉查找树(亦称二叉搜索树、二叉排序树)是一棵二叉树,其各结点关键词互异,且中根序列按其关键词递增排列。 等价描述: 二叉查找…...
深入浅出梯度下降与反向传播
文章目录 1. 前言2. 基本概念2.1 一元函数的导数2.2 偏导数2.3 方向导数2.4 梯度2.5 均方误差 3. 梯度下降3.1 梯度下降的公式3.2 梯度下降的类型(优化器) 4. 反向传播4.1 反向传播的基本步骤4.2 反向传播的数学推导 5. 实战5.1 手动求导5.2 自动求导5.3…...
PLC(01)
一.职业规划 电路----------------->电工------------------>电气-------------------plc---------------------DCS--------------------> 机器人 二.交流电直流电的概念 1.交流电AC alternating current 大小方向随时间发生周期性变化 2.直流电 Direct current…...
如何通过本地部署的DIFY辅助学习算法(PS可以辅助帮你学习任何想学习的资料)
如何通过本地部署的DIFY辅助学习算法(PS可以辅助帮你学习任何想学习的资料 一 提升知识库的大小容量1.1 调大知识库的基础配置修改.env文件1.2 通过docker compose 重启加载最新配置1.3 重新上传知识库 二 搭建算法知识库的学习助手2.1 text embedding 模型对比2.1.1 如何选择合…...
深入探讨服务器虚拟化:架构、技术与应用
1. 引言 在现代IT基础设施中,服务器虚拟化已成为一种不可或缺的技术。它不仅提高了资源利用率,还增强了系统的灵活性和可管理性。随着企业对高效、灵活和可扩展IT环境的需求不断增加,服务器虚拟化技术的应用愈发广泛。本文将深入探讨服务器虚…...
C++笔记之尾后迭代器
C笔记之尾后迭代器 code review! 参考笔记 1.C笔记之尾后迭代器 2.C笔记之迭代器失效问题处理 在C中,尾后迭代器(通常称为 past-the-end iterator)是指指向容器中最后一个元素之后的位置的迭代器。它并不指向任何有效的元素,而是…...
2024年总结【第五年了】
2024年总结 北国绕院扫雪,南方围炉烹茶,且饮一杯无? 执笔温暖不曾起舞日子里的点点滴滴,誊写一段回忆,还以光阴一段副本。 那么你要听一支新故事吗?第五年总结的片碎。 衣单天寒,走趟流星孤骑…...
EasyExcel(环境搭建以及常用写入操作)
文章目录 EasyExcel环境搭建1.创建模块 easyexcel-demo2.引入依赖3.启动类创建 EasyExcel写1.最简单的写入1.模板2.方法3.结果 Write01.xlsx 2.指定字段不写入Excel1.模板2.方法3.结果 Write02.xlsx 3.指定字段写入excel1.模板2.方法3.结果 Write03.xlsx 4.按照index顺序写入ex…...
JVM类加载器
什么是类加载器 类加载器(ClassLoader)是Java虚拟机提供给应用程序去实现获取类和接口字节码数据的技术。 类加载器只参与加载过程中的字节码获取并加载到内存这一部分 类加载器的分类 类加载器分为两类,一类是Java代码中实现的࿰…...
druid连接池参数配置
最近发现生产环境经常有数据库连接超时的问题,排查发现是druid连接池参数设置不合理导致 总结问题如下: 为了防止僵尸连接,k8s ipvs做了连接超时限制,如果TCP连接闲置超过900s(15分钟),客户端再尝试通过这个连接去发起…...
【机器学习】Kaggle实战信用卡反欺诈预测(场景解析、数据预处理、特征工程、模型训练、模型评估与优化)
构建信用卡反欺诈预测模型 建模思路 本项目需解决的问题 本项目通过利用信用卡的历史交易数据,进行机器学习,构建信用卡反欺诈预测模型,提前发现客户信用卡被盗刷的事件。 项目背景 数据集包含由欧洲持卡人于2013年9月使用信用卡进行交的…...
Linux(Ubuntu)下ESP-IDF下载与安装完整流程(2)
接前一篇文章:Linux(Ubuntu)下ESP-IDF下载与安装完整流程(1) 本文主要看参考官网说明,如下: 快速入门 - ESP32-S3 - — ESP-IDF 编程指南 latest 文档 Linux 和 macOS 平台工具链的标准设置 - ESP32-S3 - — ESP-IDF 编程指南 latest 文档 一、安装准备 1. Linux用...
SpringBoot3 快速启动框架
文章目录 1 SpringBoot3 介绍 1.1 SpringBoot3 简介1.2 快速入门1.3 入门总结 2 SpringBoot3 配置文件 2.1 统一配置管理概述2.2 属性配置文件使用2.3 YAML配置文件使用2.4 批量配置文件注入2.5 多环境配置和使用 3 SpringBoot 整合 springMVC 3.1 实现过程3.2 web相关配置3.3…...
Enum枚举类,静态常量类,静态类的区别
Enum枚举类,静态常量类,静态类的区别 Enum枚举类静态常量类静态类Enum枚举类,静态常量类,静态类的区别 Enum枚举类 Enum枚举类的结构组成和用法使用可以查阅 Enum枚举类与静态变量和静态数组的区别 静态常量类 public class St…...
解锁专利世界的钥匙 ——famiwei 网
在知识经济的时代,专利作为创新成果的重要体现,无论是对于企业、科研人员乃至整个社会的发展都具有举足轻重的意义。而在众多的专利网站中,famiwei 网为用户提供了一个全面、精准且高效的专利信息交流与服务的舞台。 一、卓越功能,开启专利探索之门 famiwei 网拥有一套强大的专…...
金融租赁系统的创新与发展推动行业效率提升
金融租赁系统的技术升级与创新 在当今快速发展的金融市场中,金融租赁系统的技术升级与创新充满了无限可能。想象一下,传统的租赁方式就像一位沉闷的老师,而新兴技术就如同一位活泼的学生,不断追求新鲜事物。通过自动化、人工智能…...
SQL-Server链接服务器访问Oracle数据
SQL Server 链接服务器访问 Oracle 离线安装 .NET Framework 3.5 方法一:使用 NetFx3.cab 文件 下载 NetFx3.cab 文件,并将其放置在 Windows 10 系统盘的 C:Windows 文件夹中。 以管理员身份运行命令提示符,输入以下命令并回车: …...
Sonic:开源Go语言开发的高性能博客平台
Sonic:一个用Go语言开发的高性能博客平台 简介 Sonic,一个以其速度如声速般快速而命名的博客平台,是一个用Go语言开发的高性能博客系统。正如其名字所暗示的,Sonic旨在提供一个简单而强大的博客解决方案。这个项目受到了Halo项目…...
【react】常见的性能优化 1
目录 常见的 React 性能优化手段 1. 使用 useMemo 和 useCallback 缓存数据和函数 2. 使用 React.memo 缓存组件 3. 组件懒加载 4. 合理使用 key 5. 在组件销毁时清除定时器/事件 6. 使用 Suspense 和 Lazy 拆分组件 7. 使用 Fragment 避免额外标记 8. 避免使用内联函…...
SpringCloud源码-openFeign
LoadBalancer默认只有nacos服务发现器 openFeign与springcloud loadbalancer的结合点...
QLabel添加点击处理
在QLabel中添加点击事件有三种方式,分别是 使用LinkActivated信号连接槽函数(有缺限)注册事件分发器eventFilter创建类重写鼠标事件 1. 使用LinkActivated信号 QLabel类中有LinkActivated信号,是当标签中的链接被点击的时候触发…...
Markdown表格的使用
Markdown表格的使用 前言语法详解定义表格设定表格列内容的对齐方式 使用场景及实例小结其他文章快来试试吧 Markdown表格的使用👈点击这里也可查看 前言 表格通常作为一种布局的形式,用于结构化的数据展示。 Markdown表格包含三个部分:表头…...
时间序列预测算法介绍
时间序列预测是根据时间序列数据的历史变化规律,对未来数据进行预测的方法。在给定的代码中,使用的是自回归(AR)模型中的AR(4)模型来预测光伏功率。以下将详细解释这种算法: 1. 自回归模型(AR模型…...
加密流量TLS1.2 和TLS1.3的握手区别
加密流量TLS1.2 和TLS1.3的握手区别 TLS1.2 握手均是明文 1)Client Hello 2)Server Hello 3)Certificate TLS1.3 握手中Client Hello是明文,而Server Hello中Extensions以及后面的握手信息不可见 1)Client Hello…...
MySQL数据库——主从复制
本文详细介绍 MySQL的主从复制,从原理到配置再到同步过程。 文章目录 简介核心组件主从复制的原理作用主从复制的线程模型主从复制的模式形式复制的方式设计复制机制主从复制的配置步骤优化和改进总结 简介 MySQL 主从复制(Replication)是一…...
详细说明嵌入式linux中bootcmd与bootargs差异
bootcmd 和 bootargs 是在嵌入式系统开发,特别是基于U-Boot(一个广泛应用的开源引导加载程序)环境中常见的两个重要参数,它们的区别如下: 功能用途 bootcmd: 定义:bootcmd 是U-Boot中的一个环…...
【UE5】UnrealEngine源码构建2:windows构建unreal engine 5.3.2
参考大神知乎的文章:UE5 小白也能看懂的源码编译指南 据说会耗费400G的空间。 代码本身并不大,可能是依赖特别多,毕竟看起来UE啥都能干,核心还是c++的, 【UE5】UnrealEngine源码构建1:tag为5.3.2源码clone 本着好奇+ 学习的态度,想着也许有机会能更为深入的熟悉UE的机制…...
【YOLO算法改进】ALSS-YOLO:无人机热红外图像|野生动物小目标检测
目录 论文信息 论文创新点 1.自适应轻量通道分割和洗牌(ALSS)模块 2.轻量坐标注意力(LCA)模块 3.单通道聚焦模块 4.FineSIOU损失函数 摘要 架构设计 轻量高效网络架构 - ALSS模块 LCA模块 单通道聚焦模块 损失函数优…...
时间序列预测算法---LSTM
文章目录 一、前言1.1、深度学习时间序列一般是几维数据?每个维度的名字是什么?通常代表什么含义?1.2、为什么机器学习/深度学习算法无法处理时间序列数据?1.3、RNN(循环神经网络)处理时间序列数据的思路?1.4、RNN存在哪些问题?…...
【QT】:QT图形化界面概述
Qt背景介绍 1.1 什么是Qt Qt 是⼀个跨平台的C图形⽤⼾界⾯应⽤程序框架。它为应⽤程序开发者提供了建⽴艺术级图形 界⾯所需的所有功能。它是完全⾯向对象的,很容易扩展。Qt为开发者提供了⼀种基于组件的开发模 式,开发者可以通过简单的拖拽和组合来实现…...
[论文笔记]Representation Learning with Contrastive Predictive Coding
引言 今天带来论文 Representation Learning with Contrastive Predictive Coding的笔记。 提出了一种通用的无监督学习方法从高维数据中提取有用表示,称为对比预测编码(Contrastive Predictive Coding,CPC)。使用了一种概率对比损失, 通过使用负采样使…...
Redis相关
Redis相关 什么是redis?redis可以干什么? Redis是一个c语言编写的nosql数据库(不仅仅是sql,泛指非关系型数据库,一般把非关系型数据库称为nosql数据库),数据在内存中以键值对的形式存储,读写速度快,提供数据持久化方式. 常常被广泛应用到做缓存 Redis使用场景 1.缓存 2…...