【大模型实战篇】Mac本地部署RAGFlow的踩坑史
1. 题外话
最近一篇文章还是在11月30日写的,好长时间没有打卡了。最近工作上的事情特别多,主要聚焦在大模型的预训练、微调和RAG两个方面。主要用到的框架是Megatron-DeepSpeed,后续会带来一些分享。今天的文章主要聚焦在RAG。
近期调研了一系列开源的RAG框架(约20多个开源项目),相对来说,RAGFlow【1】更贴合我的需求,因此就花了一些时间去研究,本文分享下在Mac系统本地化部署的实践。通过本地化部署和使用,能够更好的帮助你分析其中的一些能力以及理解代码。不过话说回来,虽然RAGFlow的demo使用还是挺可以的,但开源项目的代码质量和文档质量不得不令人吐槽,希望该项目的作者能够重视起来。
2. Mac系统部署
我们采用从源码部署的模式【2】。由于0.15.1似乎对mac的支持不够,因此回退到0.14.1版本。后续的安装是基于0.14.1版本进行,这个需要说明一下。
这里说一下我本地的mac系统信息:
芯片:Apple M2 Pro
内存:16G
macOS: Ventura 13.4
2.1 资源要求
- CPU ≥ 4 cores
- RAM ≥ 16 GB
- Disk ≥ 50 GB
- Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1
Mac查看cpu信息
> sysctl -a | grep machdep.cpu
machdep.cpu.cores_per_package: 10
machdep.cpu.core_count: 10
machdep.cpu.logical_per_package: 10
machdep.cpu.thread_count: 10
machdep.cpu.brand_string: Apple M2 Pro
2.2 安装pipx
> python -m pip install --user pipx
配置启动:
> python -m site --user-base
> nano ~/.zshrc
添加以下指令到.zshrc:
export PATH="/path/to/user_base/bin:$PATH"
生效:
> source ~/.zshrc
接下来可以使用pipx:
> pipx
usage: pipx [-h] [--quiet] [--verbose] [--global] [--version]
{install,install-all,uninject,inject,pin,unpin,upgrade,upgrade-all,upgrade-shared,uninstall,uninstall-all,reinstall,reinstall-all,list,interpreter,run,runpip,ensurepath,environment,completions}
...
Install and execute apps from Python packages.
Binaries can either be installed globally into isolated Virtual Environments
or run directly in a temporary Virtual Environment.
2.3 安装poetry
pipx install poetry
配置:
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
2.4 安装依赖包
瘦身版:
~/.local/bin/poetry install --sync --no-root
完整版:
~/.local/bin/poetry install --sync --no-root --with full
注意:此时安装会报xgboost的安装错误,原因是xgboost 包的版本 1.5.0 不支持 PEP 517 构建标准,而 Poetry 默认使用 PEP 517 来处理依赖包的安装【3】。
解决方案为编辑 pyproject.toml 文件,在 [tool.poetry.dependencies] 部分,调整 xgboost 的版本范围,xgboost = "^1.6.0", 然后保存修改。
使用以下命令重新生成 poetry.lock 文件:
~/.local/bin/poetry lock
根据 pyproject.toml 文件的依赖定义,更新或重新生成 poetry.lock 文件。完成后再次执行
~/.local/bin/poetry install --sync --no-root
安装依赖顺利完成。
2.5 启动第三方服务
使用 Docker Compose 启动 ‘base’ 服务(MinIO、Elasticsearch、Redis 和 MySQL)
docker compose -f docker/docker-compose-base.yml up -d
这里也遇到docker compose的问题,可能需要涉及到重新安装,看你的版本,如果是高版本,则需要安装一个docker-compose的extension包,否则安装docker-compose。确保你的docker-compose版本在v2.26.1及以上。
另外,可以添加docker的国内加速镜像,能够顺利一些。
2.6 启动 RAGFlow 后端服务
在 docker/entrypoint.sh 文件中注释掉 nginx 这一行。
# /usr/sbin/nginx
回退路径到ragflow目录,激活 Python 虚拟环境:
> source .venv/bin/activate
> export PYTHONPATH=$(pwd)
如果无法访问 HuggingFace,可以设置 HF_ENDPOINT 环境变量以使用镜像站点:
推荐一个 huggingface 的镜像站:https://hf-mirror.com/
export HF_ENDPOINT=https://hf-mirror.com
在ragflow路径下运行 entrypoint.sh 脚本来启动后端服务:
bash docker/entrypoint.sh
这里直接使用源码,可能会报错路径问题, /ragflow/docker/service_conf.yaml.template: No such file or directory。 需要调整一下路径【3】。具体如下:
#!/bin/bash# replace env variables in the service_conf.yaml file
rm -rf ./conf/service_conf.yaml
while IFS= read -r line || [[ -n "$line" ]]; do# Use eval to interpret the variable with default valueseval "echo \"$line\"" >> ./conf/service_conf.yaml
done < ./docker/service_conf.yaml.template# unset http proxy which maybe set by docker daemon
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""#/usr/sbin/nginxexport LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/PY=python3
if [[ -z "$WS" || $WS -lt 1 ]]; thenWS=1
fifunction task_exe(){while [ 1 -eq 1 ];do$PY rag/svr/task_executor.py $1;done
}for ((i=0;i<WS;i++))
dotask_exe $i &
donewhile [ 1 -eq 1 ];do$PY api/ragflow_server.py
donewait;
另外启动过程中,可能会报一些module not found的错误,python依赖包罗列如下:
beartype, pycryptodomex, pdfplumber, polars, datrie, hanziconv, roman_numbers, cn2an strenum, tiktoken, xxhash, elasticsearch_dsl, valkey, flask_login, word2number, infinity
如果启动成功,可以看待下述的信息:
2.6 启动 RAGFlow 前端服务
安装前端依赖项:
注:需要安装node
> cd web
> npm install --force
安装依赖的过程又有点麻烦,出现很多次timeout
配置一下镜像:
npm config set registry https://registry.npmmirror.com/
在 .umirc.ts 中将 proxy.target 更新为 http://127.0.0.1:9380
vim .umirc.ts
启动 RAGFlow 前端服务:
npm run dev
3. 系统界面展示
4. 服务关闭
开发完成后停止 RAGFlow 服务
停止 RAGFlow 前端服务:
pkill npm
停止 RAGFlow 后端服务:
pkill -f “docker/entrypoint.sh”
5. 参考材料
【1】https://github.com/infiniflow/ragflow
【2】Launch the RAGFlow Service from Source
【3】源码部署RAGFlow-0.14.1
相关文章:
【大模型实战篇】Mac本地部署RAGFlow的踩坑史
1. 题外话 最近一篇文章还是在11月30日写的,好长时间没有打卡了。最近工作上的事情特别多,主要聚焦在大模型的预训练、微调和RAG两个方面。主要用到的框架是Megatron-DeepSpeed,后续会带来一些分享。今天的文章主要聚焦在RAG。 近期调研了一系…...
SQL Server实现将分组的其他字段数据拼接成一条数据
在 SQL Server 中,可以使用 STRING_AGG 函数(SQL Server 2017 及更高版本支持)将分组的其他字段数据拼接成一条数据。以下是示例代码: 假设有一个表 Orders,结构如下: OrderIDCustomerIDProduct1C001Appl…...
STM32 高级 物联网通讯之蓝牙通讯
目录 蓝牙基础知识 蓝牙概述 蓝牙产生背景 蓝牙发展历程 蓝牙技术类型 经典蓝牙(BR/EDR和AMP) 低功耗蓝牙(BLE) 市场上常见蓝牙架构 SOC蓝牙单芯片方案 SOC蓝牙+MCU方案 蓝牙host+controller分开方案 蓝牙协议栈 蓝牙芯片架构 BLE低功耗蓝牙协议栈框架 物理…...
堆排序基础与实践:如何在Java中实现堆排序
目录 一、堆排序的基本原理 二、堆排序的实现步骤 三、堆排序的时间复杂度和空间复杂度 四、堆排序的工作流程 五、堆排序的优缺点 六、堆排序的应用场景 堆排序(Heap Sort)是一种基于堆数据结构的排序算法。堆是一种特殊的完全二叉树,…...
你有哪些Deep Learning(RNN、CNN)调参的经验?
在深度学习的实践中,调参是一项既艺术又科学的工作。它不仅需要理论知识的支撑,还需要大量的实践经验。以下是一些在RNN和CNN模型调参中积累的经验,希望对正在这个领域摸索的朋友们有所帮助。 1. 从成熟的开源项目开始 对于初学者来说&…...
小程序租赁系统开发的优势与应用探索
内容概要 在如今这个数码科技飞速发展的时代,小程序租赁系统开发仿佛是一张神奇的魔法卡,能让租赁体验变得顺畅如丝。想象一下,无论你需要租用什么,从单车到房屋,甚至是派对用品,只需动动手指,…...
Spring Boot教程之三十九: 使用 Maven 将 Spring Boot 应用程序 Docker 化
如何使用 Maven 将 Spring Boot 应用程序 Docker 化? Docker是一个开源容器化工具,用于在隔离环境中构建、运行和管理应用程序。它方便开发人员捆绑其软件、库和配置文件。Docker 有助于将一个容器与另一个容器隔离。在本文中,为了将Spring B…...
Day58 图论part08
拓扑排序精讲 拓扑排序看上去很复杂,其实了解其原理之后,代码不难 代码随想录 import java.util.*;public class Main{public static void main (String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int m = sc.nextInt();List<List<Integer&…...
u3d中JSON数据处理
一.认识JSON 1.1 Json概述 JSON(JavaScript Object Notation,JavaScript对象表示法)JSON和XML是比较类似的技术,都是用来存储文本信息数据的;相对而言,JSON比XML体积更小巧,但是易读性不如XML…...
大语言模型(LLM)一般训练过程
大语言模型(LLM)一般训练过程 数据收集与预处理 收集:从多种来源收集海量文本数据,如互联网的新闻文章、博客、论坛,以及书籍、学术论文、社交媒体等,以涵盖丰富的语言表达和知识领域。例如,训练一个通用型的LLM时,可能会收集数十亿甚至上百亿字的文本数据.清洗:去除…...
第十六届蓝桥杯模拟赛(第一期)(C语言)
判断质因数 如果一个数p是个质数,同时又是整数a的约数,则p称为a的一个质因数。 请问2024有多少个质因数。 了解 约数,又称因数。整数a整除整数b,b为a的因数(约数)质数,又称素数。只有1和它本身两…...
某网站手势验证码识别深入浅出(全流程)
注意,本文只提供学习的思路,严禁违反法律以及破坏信息系统等行为,本文只提供思路 如有侵犯,请联系作者下架 本文识别已同步上线至OCR识别网站: http://yxlocr.nat300.top/ocr/other/20 本篇文章包含经验和教训总结,我采用了两种方法进行识别,两种方法都各有优劣,其中一…...
QT---------QT框架功能概述
常用Qt界面组件 Qt提供了丰富的界面组件,如QPushButton(按钮)、QLineEdit(单行文本框)、QTextEdit(多行文本框)、QLabel(标签)、QComboBox(下拉框࿰…...
C++ 设计模式:模板方法(Template Method)
链接:C 设计模式 链接:C 设计模式 - 策略模式 链接:C 设计模式 - 观察者模式 模板方法(Template Method)是一种行为设计模式,它定义了一个操作中的算法的骨架,而将一些步骤延迟到子类中。通过这…...
下载mysql免安装版和配置
1、下载地址 点击去官网下载https://downloads.mysql.com/archives/community/ 2、解压安装mysql 解压的文件夹是没有my.ini文件和data目录,需要我们自己去创建 根目录下创建my.ini,根目录创建data [mysql] default-character-setutf8[mysqld] #端口 po…...
Web服务端技术原理及应用
前言 黄色的是考点,蓝色的是重点。 HTML/CSS/JS 本章会有一个7分的程序设计题,用到前端知识 form表单元素,常用表单元素 html:HTML快速上手 基础语法、css常用选择器(ID、类)、盒子模型 css:网页美化指南 JS …...
数据库的使用09:使用SSMS工具将SQLsever数据导出到Excel
第一步,新建一个空白的.csv文件 第二步,按步骤点击导出 第三步,选择数据源(Db数据库) 第四步,选择目标源(CSV平面文件目标) 第五步,指定表或SQL 一直点下一步即可&am…...
Python中__getitem__ 魔法方法
在Python中,__getitem__ 是一个特殊的方法,通常称为“魔法方法”或“双下方法”(因为它们的名字前后都有两个下划线)。__getitem__ 方法允许一个对象实现像序列(如列表、元组、字符串)一样的行为࿰…...
自动驾驶三维重建
大概八成估计是未来的科研方向了 Neural Radiance Field in Autonomous Driving: A Survey...
小程序中引入echarts(保姆级教程)
hello hello~ ,这里是 code袁~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 🦁作者简介:一名喜欢分享和记录学习的在校大学生…...
INNER JOIN,LEFT JOIN,RIGHT JOIN,FULL JOIN这四个怎么在gorm中使用
在 GORM 中,JOIN 操作是通过 Joins 方法实现的,而不同类型的 JOIN(如 INNER JOIN、LEFT JOIN、RIGHT JOIN 和 FULL JOIN)可以通过特定的 SQL 语法来表示。GORM 本身并没有直接的 INNER, LEFT, RIGHT 等专用方法,但可以…...
分布式版本管理工具——Git关联远程仓库(github+gitee)
Git远程仓库(Github)的基本使用 一、前言二、Git远程仓库介绍三、演示1. 关联github远程仓库2. 关联gitee(码云)远程仓库3. 重命名远程仓库名4. 移除远程仓库 四、结束语 一、前言 古之立大事者,不惟有超世之才&#x…...
复习打卡大数据篇——HIVE 01
目录 1. 数据仓库初识 1.1 数据仓库概念 1.2 数据仓库特点 1.3 OLTP、OLAP区别 1.4 数仓分层架构 2. HIVE初识 2.1 什么是hive? 2.2 hive架构 3. HIVE初体验 3.1 beeline客户端使用 1. 数据仓库初识 1.1 数据仓库概念 数据仓库,Data WareHou…...
第430场周赛:使每一列严格递增的最少操作次数、从盒子中找出字典序最大的字符串 Ⅰ、统计特殊子序列的数目、统计恰好有 K 个相邻元素的数组数目
Q1、使每一列严格递增的最少操作次数 1、题目描述 给你一个由 非负 整数组成的 m x n 矩阵 grid。 在一次操作中,你可以将任意元素 grid[i][j] 的值增加 1。 返回使 grid 的所有列 严格递增 所需的 最少 操作次数。 2、解题思路 逐列处理:我们需要逐…...
前端处理跨域的几种方式
什么是跨域 指一个域下文档或者脚本去请求另一个域下的资源,这里的跨域是广义的; 广义的跨域: 资源提跳转:A链接、重定向、表单提交资源潜入:link、script、img、frame等dom标签,还有样式中background:url(…...
《计算机网络A》单选题-复习题库
1. 计算机网络最突出的优点是(D) A、存储容量大B、将计算机技术与通信技术相结合C、集中计算D、资源共享 2. RIP 路由协议的最大跳数是(C) A、13B、14C、15D、16 3. 下面哪一个网络层次不属于 TCP/IP 体系模型(D&a…...
网络安全威胁2024年中报告
下载地址: 网络安全威胁2024年中报告-奇安信...
Quartz - JDBC-Based JobStore事务管理及锁机制
由于JDBC-Based JobStore在进行job注册、trigger注册、任务调度及执行过程中需要操作数据库,而且会涉及到多张表,比如trigger注册的时候会根据不同情况写入triggers、simple_triggers或cron_triggers表,在执行任务的时候会读取和更新trigg…...
机器学习作业 | 泰坦尼克号生存的预测任务
泰坦尼克号生存的预测任务 学校作业,我来水一水 环境:pycharmanaconda虚拟环境 文章目录 泰坦尼克号生存的预测任务0.环境搭建参考:1 目的与要求2 任务背景3 任务简介4 模型介绍1.决策树(Decision Tree)2.朴素贝叶斯…...
Tonghttpserver6.0.1.3 使用整理(by lqw)
文章目录 1.声明2.关于单机版控制台和集中管理控制台3.单机版控制台3.1安装,启动和查看授权信息3.2一些常见的使用问题(单机控制台)3.3之前使用的是nginx,现在要配nginx.conf上的配置,在THS上如何配置3.4如何配置密码过…...
图像坐标导数的表达式 Expression for Image Coordinate Derivate
Title: 图像坐标导数的表达式 Expression for Image Coordinate Derivate 文章目录 I. 图像坐标 Image CoordinatesII. 关于 x \mathbf{x} x 的导数 Derivative wrt x \mathbf{x} x1. 第一部分2. 第二部分3. 两部分合并 III. 关于 H H H 的导数 Derivative wrt H H H1. 第一…...
Jenkins 中自动化部署 Spring Boot 项目
👨🏻💻 热爱摄影的程序员 👨🏻🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻🏫 一位高冷无情的全栈工程师 欢迎分享 / 收藏 / 赞 / 在看…...
Live555、FFmpeg、GStreamer介绍
Live555、FFmpeg 和 GStreamer 都是处理流媒体和视频数据的强大开源框架和工具,它们广泛应用于实时视频流的推送、接收、处理和播放。每个框架有不同的设计理念、功能特性以及适用场景。下面将详细分析这三个框架的作用、解决的问题、适用场景、优缺点,并…...
西门子DBX DBD DBB DBW的关系
DB10.DBD0 DB10.DBW0DB10.DBW2 DB10.DBB0DB10.DBB1DB10.DBB2DB10.DBB3 DB10.DBX0.00.7DB10.DBX1.01.7DB10.DBX2.02.7DB10.DBX3.03.7 使用之前需要在DB10中先定义,如果你仅在DB10中定义了一个DBD0,那么原则上你是可以使用上述所有地址的,但…...
语言模型在时间序列预测中的作用
语言模型在时间序列预测中的作用 从目前相关的研究情况来看,大语言模型在时间序列预测中的作用存在争议。 质疑其有用性的方面 消融研究结果:在对一些流行的基于语言模型(LLM)的时间序列预测方法进行消融研究时发现,去除LLM组件或将其替换为基本注意力层,在大多数情况下…...
【centos8 镜像修改】centos8 镜像修改阿里云
要将 CentOS 8 的镜像源修改为阿里云镜像,你需要编辑 /etc/yum.repos.d/ 目录下的 .repo 文件。以下是具体的步骤: 备份原始的 .repo 文件: 在编辑之前,建议备份原始的 .repo 文件,以便在出现问题时可以恢复。 sudo cp…...
2024年12月个人工作生活总结
本文为 2024年12月工作生活总结。 研发编码 Golang语言byte数组赋值 假定有如下变量: var strCode string var bCode [9]byte现需将string类型转换成byte类型,如下: bCode []byte(strCode)无法转换,提示: cannot…...
[cg] android studio 无法调试cpp问题
折腾了好久,native cpp库无法调试问题,原因 下面的Deploy 需要选Apk from app bundle!! 另外就是指定Debug type为Dual,并在Symbol Directories 指定native cpp的so路径 UE项目调试: 使用Android Studio调试虚幻引擎Android项目…...
vulnhub靶场【warzone】之2
前言 靶机:warzone-1,IP地址192.168.1.71 攻击:kali,IP地址192.168.1.16 都采用虚拟机,网卡为桥接模式 主机发现 因为都是同一局域网下,相当于内网环境,所以使用下面的工具,若想…...
MySQL什么情况下会加间隙锁?
目录 一、使用范围条件查询 二、唯一索引的范围查询 三、普通索引的查询 四、间隙锁的锁定规则 五、间隙锁的影响 间隙锁(Gap Lock)是MySQL中的一种锁机制,主要用于防止幻读现象。在MySQL的InnoDB存储引擎中,当事务隔离级别设置为可重复读(Repeatable Read)时,间隙…...
REDIS2.0
string list hash set 无序集合 声明一个key,键里面的值是元素,元素的类型是string 元素的值是唯一的,不能重复 多个集合类型之间可以进行并集,交集,集查的运算 sadd test1 a b c c d :添加5个元素&am…...
Java方法使用详解:从基本概念到进阶技巧
1. 方法介绍 方法是执行特定功能的代码块,可以被多次调用。方法由方法头和方法体组成,方法头包括方法名、参数列表和返回类型。方法体包含实际执行的代码。 2. 无参无返回值方法使用 这种方法没有参数,也不返回任何值。常用于执行一些不需…...
RT-Thread中堆和栈怎么跟单片机内存相联系
现在RT-ThreadMCU的应用方式越来越普遍,RT-Thread需要配置MCU中的RAM到的系统中,进入系统内存管理,才能提供给基于实时系统的应用程序使用,比如给应用程序提供malloc、free等函数调用功能。在嵌入式软件开发中,我们经常…...
对jenkins的rpm进行处理
下载Jenkins RPM包 首先,你需要从Jenkins官方网站(https://pkg.jenkins.io/redhat - stable/)下载合适的RPM包。通常,对于CentOS等基于RPM的系统,可以选择jenkins - <version>.noarch.rpm这种格式的包࿰…...
从Huggingface中下载数据集、模型
报错: 可能原因: 1. 服务器网络连接 这样就显示没有问题 2.访问权限问题 3.连接超时 4.使用镜像 使用镜像的方法在autodl上是可以成功的,但是在一些服务器却不能成功,那么就需要我们下载到本地,然后再把本地的打包…...
设计模式的分类
根据概念性动机分3类设计模式 创建型模式:管理对象的创建。 常用的有单例模式,简单工厂模式,工厂方法模式,另外还有原型模式,抽象工厂模式,建造者模式 结构型模式:将已有对象加入到设计中时…...
【图像去噪】论文精读:DualDn: Dual-domain Denoising via Differentiable ISP
请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中) 文章目录 前言Abstract1 Introduction2 Related W…...
张量与数据类型
Pytorch最基本的操作对象——张量(tensor),张量是Pytorch中重要的数据结构,可认为是一个高维数组。一般的,标量(scalar)是只有大小没有方向的量,如1、2、3等;向量&#x…...
JavaScript概述
Web网页的三要素:HTML结构、CSS表现、JavaScript行为。 一、JavaScript语言的组成 JS的全称叫JavaScript,它一门面向对象的解释型弱类型语言。 JavaScript也是由3个部分来组成的:ECMAScript、DOM、BOM。 ECMAScript——它是JS的核心部分&a…...
tarjan算法——割边
今天也是小小的学了一个tarjan算法中的割边的一个应用 他和割点很像,都是用来处理无向图的,只不过是不能走反向边罢了 我们首先来说一个割边的定义 割边 当我们在无向图中删除一个边,无向图被分成不联通的两部分,那么这条边就…...