PTA数据结构编程题7-1最大子列和问题
我参考的B站up的思路
题目
题目链接
给定K个整数组成的序列{ N
1
, N
2
, …, N
K
},“连续子列”被定义为{ N
i
, N
i+1
, …, N
j
},其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
数据1:与样例等价,测试基本正确性;
数据2:102个随机整数;
数据3:103个随机整数;
数据4:104个随机整数;
数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
题目分析
由题目给出的数据范围,我们可以创建一个大小为10^5的数组来储存数据。
然后我们思考如何得出答案。答案要求最大的子列和,那么我们就想到给数组中的元素做加法,那么这个加法什么时候做到题目要求的连续元素组成且最大呢?
我们可以把每次累加的结果存起来,一但这个累加的结果为负数。说明它对于后续子列和的计算效果都是使子列和变小的。那么怎么办?
我们可以把它给归0,重新从这步出发,再算子列和。
同时,我们要定义一个变量为max,初始化为数组第一个元素的值,一旦子列和大于max,我们就更新max的值,当sum走到负数的结果,也就意味着它不会再超越max了,只有把它归0,重新再算才有可能找到新的最大子列和。
代码如下
考察到的算法知识:
道题考察的算法知识属于动态规划(也常被称为动态规划思想的简单应用)以及贪心算法的范畴,以下是具体分析:
动态规划角度
状态定义:
这里用变量 sum 来记录以当前元素结尾的连续子列的和,它可以看作是一种状态表示。例如在遍历序列的过程中,每到一个新元素,sum 的值会根据前一个位置的状态(也就是前一个元素结尾的连续子列和情况)以及当前元素的值来更新,符合动态规划通过定义状态来描述问题中间结果的特点。
状态转移:
核心代码 sum += ret[i]; if (sum < 0) { sum = 0; } 体现了状态转移的过程。当把当前元素 ret[i] 加入到前面的子列和 sum 中后,如果 sum 变成负数了,就意味着从开头到当前位置的这个连续子列已经没有继续扩展下去对求最大子列和有帮助了(因为它只会让后续的和变小),所以将 sum 置为 0,相当于重新从当前位置开始寻找新的可能构成最大子列和的连续子列,这种根据之前的状态以及当前情况来更新状态的方式就是典型的动态规划中的状态转移思路。
最优子结构性质:
整个序列的最大子列和问题可以分解为求以每个位置结尾的连续子列中的最大子列和,然后再从这些局部的最大子列和中找出全局最大的那个。以某个位置结尾的最大子列和的求解依赖于前面位置的相关信息(也就是前面位置结尾的连续子列和等情况),体现了最优子结构性质,即一个最优解可以由子问题的最优解组合而成,这也是动态规划所依据的重要性质之一。
贪心算法角度
局部最优决策:
在代码中,每当 sum 小于 0 时,就舍弃之前积累的子列(将 sum 置 0),这相当于做出了一个贪心的选择,即只关注当前能获得的最大利益(让子列和尽可能大),不考虑之前已经走过但对后续求和不利的那些元素构成的子列了,每次都选择当前看起来最优的策略(保证子列和非负,以期后面能得到更大的总和),希望通过这样一步步的局部最优决策,最终达到全局最优解(找到最大子列和)。
最终达到全局最优:
通过不断地按照这样的贪心策略去更新 sum 并比较 sum 和 max 的大小来记录全局最大的子列和,在给定的问题情境下,这样的贪心策略确实能够保证找到整个序列的最大子列和,实现了从局部最优逐步走向全局最优的目标,符合贪心算法的基本思路。
总体而言,无论是从动态规划角度的状态定义、状态转移和最优子结构体现,还是从贪心算法角度的局部最优决策来达成全局最优的思路来看,这道题考查的算法知识都落在这两种常见算法思想的范围里。
源码
源码
相关文章:
PTA数据结构编程题7-1最大子列和问题
我参考的B站up的思路 题目 题目链接 给定K个整数组成的序列{ N 1 , N 2 , …, N K },“连续子列”被定义为{ N i , N i1 , …, N j },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 1…...
Elasticsearch-模糊查询
模糊查询 前缀搜索:prefix 概念:以xx开头的搜索,不计算相关度评分。 注意: 前缀搜索匹配的是term,而不是field。 前缀搜索的性能很差 前缀搜索没有缓存 前缀搜索尽可能把前缀长度设置的更长 语法: GET &…...
C#学习1:C#初接触,一些基础内容备忘和相关报错说明
目录 1 C#基本语法格式 1.1 基础规则 1.2 以if为例子 2 一些写法 2.1 时间相关 2.2 对数写法 2.3 关于使用random 2.4 UnityEngine.Random.value 2.5 PerlinNoise 函数 PerlinNoise 函数本身的输出范围 3 各种报错 3.0 unity里对C#报错内容超级详细 3.1 error cs1…...
机器学习的方法
机器学习方法主要分为三种:监督学习、无监督学习、半监督学习。 1.监督学习 神经网络、朴素贝叶斯、线性回归、逻辑回归、随机森林、支持向量机(SVM)都是典型的监督学习方法。 监督学习,即监督机器学习,之所以叫监督…...
el-pagination 为什么只能展示 10 条数据(element-ui@2.15.13)
好的,我来帮你分析前端为什么只能展示 10 条数据,以及如何解决这个问题。 问题分析: pageSize 的值: 你的 el-pagination 组件中,pageSize 的值被设置为 10:<el-pagination:current-page"current…...
vulhub-wordpress靶场
一.主题上传漏洞 来到靶场点击主题选择add new 这里有一个上传主题的地方 我们可以去网上找到wordpress主题下载一个 wordpress模板 网页设计模板 免费 免费下载 - 爱给网 下载完成后对我们有用的东西只有这一个目录,把它拖出来 点开moban目录后,创建…...
Docker 默认安装位置迁移
一、找到 Docker 默认安装位置 [roothost-192-168-0-1 ~]# docker info Client:Version: 26.1.0Context: defaultDebug Mode: falseServer:Containers: 31Running: 31Paused: 0Stopped: 0Images: 128Server Version: 26.1.0Storage Driver: overlay2Backing Filesystem:…...
【机器学习】SVM支持向量机(一)
介绍 支持向量机(Support Vector Machine, SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM 的核心思想是通过找到一个最优的超平面来划分不同类别的数据点,并且尽可能地最大化离该超平面最近的数据点(支持向量…...
无需配置设备,借助GitHub快速编译项目并直接运行!
引言 你是否曾经有过类似的烦恼,发现了一个有趣的项目,想要测试一下,但是自己的设备没有对应的开发环境或者受制于自己的设备,不想或者不能去配置对应的开发环境,应该怎么办呢?这种情况下,其实…...
【C#联合halcon实现绘制ROI功能】
前言 C#联合halcon实现绘制ROI功能: C#联合Halcon,使用HDrawingObject、HDrawingObjectXld,绘制矩形、方向矩形、圆形、椭圆、自定义ROI。支持拖动、重设大小、选中,右键复制、粘贴、删除功能。 运行结果 代码 代码结构 MainFo…...
语言模型的革命:大型概念模型(LCM)的崛起
在人工智能领域,Meta最近推出的一项重大突破正在引起研究人员和开发者的广泛关注:大型概念模型(Large Concept Models,简称LCM)。这一创新彻底改变了我们对语言模型的理解,并为未来AI技术的进展指明了新的方…...
在C#中获取程序的命令行参数
实现此目的的一种方法是重写程序的Main方法并赋予其一个字符串数组参数,如下面的代码所示。 static void Main(string[] args) {foreach (string arg in args){lstArguments.Items.Add(arg);} } 这种方法是从 C 编程语言继承而来的。 我更喜欢下面的方法…...
R基于贝叶斯加法回归树BART、MCMC的DLNM分布滞后非线性模型分析母婴PM2.5暴露与出生体重数据及GAM模型对比、关键窗口识别
全文链接:https://tecdat.cn/?p38667 摘要:在母婴暴露于空气污染对儿童健康影响的研究中,常需对孕期暴露情况与健康结果进行回归分析。分布滞后非线性模型(DLNM)是一种常用于估计暴露 - 时间 - 响应函数的统计方法&am…...
小程序基础 —— 08 文件和目录结构
文件和目录结构 一个完整的小程序项目由两部分组成:主体文件、页面文件: 主体文件:全局文件,能够作用于整个小程序,影响小程序的每个页面,主体文件必须放到项目的根目录下; 主体文件由三部分组…...
bishengjdk-8
title: 深入探索 BishengJDK-8:技术魅力与优势尽显 date: 2024-12-29 category: blog tags:- BishengJDK-8- Java 开发- 性能优化- 技术剖析 sig: BishengJDK archives: 2024-12 author:- way_back summary: BishengJDK-8 作为一款备受瞩目的 JDK 版本,以…...
Android9.x SurfaceView源码分析
前言 本文是继Android 深入理解SurfaceView再次对SurfaceView进行源码分析。 看了下代码,上篇文章是基于Android7.x的,本篇基于Android9.x再次进行分析, Android从7.0开始支持SurfaceView动画,并建议7.0之后使用SurfaceView替代TextureView,这里主要在Android9.0上分析Su…...
分布式 IO 模块助力冲压机械臂产线实现智能控制
在当今制造业蓬勃发展的浪潮中,冲压机械臂产线的智能化控制已然成为提升生产效率、保障产品质量以及增强企业竞争力的关键所在。而分布式 IO 模块的应用,正如同为这条产线注入了一股强大的智能动力,开启了全新的高效生产篇章。 传统挑战 冲压…...
解决VMware的ubuntu22虚拟机没有网络
解决步骤 1.在 Windows 系统中,按 “WinR” 键,输入 “services.msc” 并回车,在服务列表中找到 “VMware DHCP Service” 和 “VMware NAT Service”,确保这两个服务已启动,若未启动则右键点击选择 “启动”…...
Linux arm 编译安装glibc-2.29
重要的话说三遍: !!!!!不要轻易自己去安装glibc!!!!! !!!!!不要轻易自己去安装glibc&a…...
Docker-构建自己的Web-Linux系统-镜像webtop:ubuntu-kde
介绍 安装自己的linux-server,可以作为学习使用,web方式访问,基于ubuntu构建开源项目 https://github.com/linuxserver/docker-webtop安装 docker run -d -p 1336:3000 -e PASSWORD123456 --name webtop lscr.io/linuxserver/webtop:ubuntu-kde登录 …...
linux 7.6安装mysql 8.0步骤如下
linux 7.6安装mysql 8.0步骤如下: 注意:在导入密钥的时候这个不行,可更换为 rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2023...
meshy的文本到3d的使用
Meshy官方网站: 中文官网: Meshy官网中文站 编辑 Opens in a new window 编辑www.meshycn.com Meshy AI 中文官网首页 英文官网: Meshy目前似乎还没有单独的英文官网,但您可以在中文官网上找到英文界面或相关英文资料。 链…...
抓取手机HCI日志
荣耀手机 1、打开开发者模式 2、开启HCI、ADB调试 3、开启AP LOG 拨号界面输入*##2846579##* 4、蓝牙配对 5、抓取log adb pull /data/log/bt ./...
如果你的网站是h5网站,如何将h5网站变成小程序-除开完整重做方法如何快速h5转小程序-h5网站转小程序的办法-优雅草央千澈
如果你的网站是h5网站,如何将h5网站变成小程序-除开完整重做方法如何快速h5转小程序-h5网站转小程序的办法-优雅草央千澈 h5如何转小程序 如果当年你们开发网站是用的h5但是没有开发小程序,也没有使用uniapp这样的混开框架,但是目前根据业务需…...
2024:踏平坎坷成大道,斗罢艰险又出发!
一、开篇 12月今年最后一个月了,相逢的人已走散,Q4的OKR已经定型了,很平淡无味、闲的无聊,提前写个年终总结吧。25年,再过一个月就35岁了,一个人来北京也已经11年了。年近末尾,思绪良多。回顾过…...
Qt For Android之环境搭建(Qt 5.12.11 Qt下载SDK的处理方案)
文章目录 一、Qt For Android运行示例二、个人理解及情况解析三、配置Android相关配置项3.1 安装简述3.2 安装Qt1.安装Qt第一步:启动Qt安装包程序2.Qt账号(注册)登录3.了解Qt开源使用义务4.指定Qt安装目录5.选择Qt安装内容6.接受“许可协议”…...
LLaMA详解
LLaMA 进化史 大规模语言模型(Large Language Model, LLM)的快速发展正在以前所未有的速度推动人工智能(AI)技术的进步。 作为这一领域的先行者, Meta在其LLaMA(Large Language Model Meta AI)系列模型上取得了一系列重大突破。 近日, Meta官方正式宣布推出LLaMA-3, 作为继LL…...
【学生管理系统】权限管理之用户管理
目录 6. 权限管理 6.1 环境搭建 6.1.1 数据库 6.1.2 后端环境 6.2 用户管理 6.2.1 查询所有用户(关联角色) 6.2.2 核心1:给用户授予角色 6. 权限管理 6.1 环境搭建 6.1.1 数据库 权限管理的5张表的关系 添加4张表 # 权限表&…...
基于Java+Springboot+Vue开发的旅游景区管理系统,实习作品
项目简介 该项目是基于JavaSpringbootVue开发的旅游景区管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Java编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Java的旅…...
人工智能及深度学习的一些题目
1、一个含有2个隐藏层的多层感知机(MLP),神经元个数都为20,输入和输出节点分别由8和5个节点,这个网络有多少权重值? 答:在MLP中,权重是连接神经元的参数,每个连接都有一…...
JavaFX FXML模式下的布局
常见布局方式概述 在 JavaFX FXML 模式下,有多种布局方式可供选择。这些布局方式可以帮助您有效地组织和排列 UI 组件,以创建出美观且功能良好的用户界面。常用布局容器及布局方式 BorderPane 布局 特点:BorderPane 将空间划分为五个区域&…...
在 Windows 11 下的 WSL - Ubuntu 24.04 中安装 CUDA 的记录
#记录工作 以下是基于CUDA官网给定命令在 Windows 11 下的 WSL - Ubuntu 24.04 中安装 CUDA 的记录: 一、准备工作 确保你的 Windows 11 系统已经成功启用 WSL 功能,并且已经安装了 Ubuntu 24.04 操作系统。同时,确保系统处于联网状态&#…...
Qt 12.28 day3
作业: 1】 思维导图 2】 在登录界面的登录取消按钮进行以下设置: 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&a…...
AISuite:提供了统一的跨 LLM API的开源 Python 库
1. 简介: AISuite是一个开源的Python库,旨在提供一个统一的接口来调用不同的大型语言模型(LLM)API。这个工具由吴恩达(Andrew Ng)领导开发,目的是简化AI模型的调用过程,使得开发者能…...
springMVC-请求响应
springmvc——一 站式web框架,核心是处理http请求响应。 前后端分离:需要序列化,服务端把数据序列化成字符串或者流给前端,前端又把json转成对象,前端的叫反序列化。前端把数据序列化转成字符串给服务器,服…...
【代码分析】Unet-Pytorch
1:unet_parts.py 主要包含: 【1】double conv,双层卷积 【2】down,下采样 【3】up,上采样 【4】out conv,输出卷积 """ Parts of the U-Net model """import torch im…...
uni-app开发-识图小程序-个人中心页面
目录 一:功能描述 二:代码实现 一:功能描述 个人中心中心主要包含用户登录信息,退出登录,图像识别记录,分类识别记录,分享记录以及小程序介绍信息。用户登录状态下可以看到图形识别记录,分类识别记录和分享记录,未登录状态只能看到介绍信息,点击未登录文字会触发…...
C++小游戏
【欢迎关注编码小哥,学习更多实用的编程方法和技巧】 设计一个桌面游戏是一个有趣且富有挑战性的项目。下面是一个简单的C桌面游戏的设计思路和示例代码。我们将创建一个简单的“猜数字”游戏,玩家需要在有限的尝试次数内猜测一个随机生成的数字。 游戏…...
Flutter封装一个三方ViewPager学习
Flutter如何实现一个增强的 PageView,支持自定义页面切换动画。 前置知识点学习 CrossAxisAlignment CrossAxisAlignment 是 Flutter 中用于控制布局子组件在交叉轴(cross axis)方向上的对齐方式的一个枚举类。它主要在 Flex 布局模型中使…...
【算法】复杂性理论初步
六、算法复杂性初步 重要的复杂性类 P P P 的定义 多项式时间内可解的问题 若 L ∈ P L∈P L∈P,则存在确定性多项式时间的图灵机 M M M,使得 M ( x ) 1 ⟺ x ∈ L M(x)1⟺x∈L M(x)1⟺x∈L N P NP NP 的定义 多项式时间内可验证验证解的正确性 &…...
vscode实用插件(持续更新)
目录 Git History Diff Git Graph Error Lens Git History Diff 用于将当前分支的某个文件夹与远程分支的相同文件夹做对比,方便代码评审!解决了为了一个问题而多次commit,导致代码不好评审,即不晓得和远程分支相比࿰…...
使用Lodash工具库的orderby和sortby进行排序的区别
简介 _.orderBy 和 _.sortBy 是 Lodash 库中用于排序数组的两个函数。 区别 _.orderBy 允许你指定一个或多个属性来排序,并为每个属性指定排序方向(升序或降序)。默认所有值为升序排,指定为"desc" 降序,…...
胡闹厨房练习(三)
ScriptableObject 一、初步了解 1、实质:是一种特殊类型的Unity对象, 2、作用:用于存储大量数据,而不必依附于游戏场景中的某个GameObject。 3、特点: 可以在不增加场景中对象数量的情况下,管理和存储复杂的数据结构、配置信息、游戏状态等。 4、适用:非常适合用来…...
Postman接口测试01|接口测试基础概念、http协议、RESTful风格、接口文档
目录 一、接口测试基础概念 1、什么是接口 2、接口的类型 3、什么是接口测试 4、为什么要做接口测试 5、接口测试的实现方式 6、什么是自动化接口测试? 二、接口返回的数据格式 1、三种格式 2、Json 三、接口协议 1、webservice协议 2、dubbo协议 3、…...
算法进阶:贪心算法
贪心算法是一种简单而直观的算法思想,它在每一步选择中都采取在当前状态下最优的选择,以期望最终得到全局最优解。贪心算法通常适用于一些具有最优子结构的问题,即问题的最优解可以通过一系列局部最优解的选择得到。 贪心算法的基本思路是&a…...
深度学习笔记(6)——循环神经网络RNN
循环神经网络 RNN 核心思想:RNN内部有一个“内部状态”,随着序列处理而更新 h t f W ( h t − 1 , x t ) h_tf_W(h_{t-1},x_t) htfW(ht−1,xt) 一般来说 h t t a n h ( W h h h t − 1 W x h x t ) h_ttanh(W_{hh}h_{t-1}W_{xh}x_t) httanh(Whhht−1Wxhxt…...
电商项目高级篇07-redisson分布式锁
redisson分布式锁 1、引入maven依赖2、config类3、可重入锁设计 1、引入maven依赖 <!--引入redisson--><dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.12.0</version></depend…...
STM32中断详解
STM32中断详解 NVIC 中断系统中断向量表相关寄存器中断优先级中断配置 外部中断实验EXTI框图外部中断/事件线映射中断步骤初始化代码实现 定时器中断通用定时器相关功能标号1:时钟源标号 2:控制器标号 3:时基单元 代码实现 NVIC 中断系统 STM…...
KNN分类算法 HNUST【数据分析技术】(2025)
1.理论知识 KNN(K-Nearest Neighbor)算法是机器学习算法中最基础、最简单的算法之一。它既能用于分类,也能用于回归。KNN通过测量不同特征值之间的距离来进行分类。 KNN算法的思想: 对于任意n维输入向量,分别对应于特征…...
【Win11】安装 VMware17 和 Ubuntu
【Win11】安装 VMware17 和 Ubuntu 15 版本和 Win11 家庭版间的兼容应该有 BUG,请直接跳至【VMware 17】 安装【VMware 15】 本来是按如下资源链接安装的,但发现 15 版本和 Win11 家庭版间的兼容应该有 BUG,在安装并关闭 Hyper-Vÿ…...