当前位置: 首页 > news >正文

神经网络-VggNet

2014年VggNet被推出,获取了ILSVRC2014比赛分类项目的第二名,第一名是GoogleNet,该网络在下节介绍,本节主要介绍VggNet。

VggNet可以称为是一个家族,根据层数的不同包括了A、A-LRN、B、C、D等网络结构,其中D、E也就是常见的VggNet16、VggNet19,网络层从初始的11层增加到了19层,但参数并没有明显的增加,因为参数主要集中在全连接层。以下是VggNet网络家族网络层介绍(增加的网络层,用粗体标注),参数表示“conv〈receptive field size〉-〈number of channels〉”。

每个网络结构参数,如下:

网络结构

以VggNet16为例,各层网络结构如下:

  • 输入图像3*224*224-》使用64个3*3的卷积核做两次卷积-》经过ReLU,输出为64*224*224

  • 使用Maxpooling进行池化,池化大小为2*2,输出64*112*112

  • 输入64*112*112-》使用128个3*3的卷积核做两次卷积-》经过ReLU,输出为128*112*112

  • 使用Maxpooling进行池化,池化大小为2*2,输出128*56*56

  • 输入128*56*56-》使用256个3*3的卷积核做三次卷积-》经过ReLU,输出为256*56*56

  • 使用Maxpooling进行池化,池化大小为2*2,输出256*28*28

  • 输入256*28*28-》使用512个3*3的卷积核进行三次卷积-》经过ReLU,输出512*28*28

  • 使用Maxpooling进行池化,池化大小为2*2,输出512*14*14

  • 输入512*14*14-》使用512个3*3的卷积核进行三次卷积-》经过ReLU,输出512*14*14

  • 使用Maxpooling进行池化,池化大小为2*2,输出512*7*7

  • 连接两层1*1*4096全连接层

  • 连接一层1*1*1000进行全连接-》经过ReLU

  • 通过softmax输出1000个预测结果的概率值

通过上面网络层介绍,可以发现,卷积核从64个,陆续进行翻倍增加,64-》128-》256-》512,专注于通道数增加;池化层采用较小的2*2。整体小卷积核、小池化核使得模型架构更深更宽的同时,计算量的增加放缓

在网络测试阶段,将训练阶段的三个全连接层替换为三个卷积,测试重用训练时的参数,使得测试得到的全卷积网络因为没有全连接的限制,因而可以接收任意宽或高为的输入。

网络亮点

数据增强

  • 对图像进行镜像翻转和random RGB colour shift ,扩大样本数量

  • 对数据进行随机的裁剪,将图片裁剪为224*224大小

  • 多种尺寸训练:1)分别使用256*256和384*384固定大小的图片进行模型的训练;2)多尺度的模型训练,对图像进行缩放,缩放范围为256~512,可以理解为一种数据的抖动,增加了数据量。

下面是采用不同尺度后,模型top1和top5的效果。

数据预处理

  • 对图像每个像素值减去RGB的平均值,得到新的像素值。

  • 在某些网络结构中,使用了Local Response Normalisation,发现并没有带来效果的提升,反而增加了内存和计算时间,因此后续网络结构中并未继续使用该处理方法。

参数初始化

网络权重的初始化很重要,因为糟糕的初始化会因为深度网络中的梯度不稳定而导致学习停滞。当网络层较少时,参数值使用随机初始化;当网络层较多时,需要更加合理的参数初始化方法。

VggNet在训练A网络结构时,采用了随机方法,通过训练得到了一组实验参数。在后续的网络结构如D、E网络,利用A网络中的参数,初始化了前4层网络结构和最后三层全连接层,中间的网络层使用随机初始化进行训练。初始化参数满足均值=0,方差=0.01的正态分布,biases初始化0.

不过作者后续发现,可以不使用预训练来确定参数,可以使用Golort&Bengio(2010),进行初始化。目前有更加多的初始化方法。

多个小卷积核代替大卷积核

用多个小的卷积代替了较大的卷积核,例如,两个3*3的卷积核叠加等价于5*5卷积核的视野,三个3*3的卷积核叠加等价于7*7的卷积核视野。

多个小卷积核叠加为什么会等于大卷积核视野?

假设图像是28*28,卷积核的大小为5*5,s=1,p=0,则输出大小为(28-5+2*0)/1+1 = 24;

同样使用两个3*3的卷积核,s=1,p=0,第一个卷积核作用后,输出(28-3+2*0)/1+1=26;继续进行第二个卷积核,输出大小为(26-3+2*0)/1+1=24,从结果上看,两者处理的结果是一致的。

上面计算过程,可简化为如下图形。3个3*3卷积核替代7*7卷积核,同理。

多个小卷积核代替大卷积核,有什么好处?

  • 多个小卷积核,相对于单一的使用一个卷积核。多个卷积核具有更强的非线性映射,可以获得更多的图像特征,从而使得决策函数有更好的识别力。

  • 多个小卷积核的总参数,小于单个大卷积核的参数。假设输入通道数和输出通道数分别为input_channel 和output_channel,对于两个3*3的参数量为2*3*3*input_channel *output_channel,一个5*5卷积核的参数量为1*5*5*input_channel *output_channel,两个参数量比较5*5的参数量是多个小卷积核的1.39倍(25/18)。小卷积核替代大卷积核,参数量级的减少是其优势的一部分,更重要的是计算量的减少更加明显。

  • 多个小卷积核代替大卷积核,例如3个3*3的卷积核,替代7*7的卷积核。相当于一定程度上进行了正则化,同时通过多个卷积核进行分解,每个卷积核之后加入了ReLU激活函数,增加了非线性表示,使得整体特征提取能力得到了提升。

多个小卷积核代替大卷积核,有什么坏处?

  • 在进行反向传播时,中间的卷积层可能会占用更多的内存。

1*1卷积核

1*1卷积核,可以增加decision function的非线性能力,同时不影响卷积核的视野。1*1卷积核,可以起到以下作用。

  • 起到降维和升维的作用

  • 增加非线性:可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。

  • 跨通道信息交互:1*1的卷积核,实际上是对不同channel的信息,进行了线性组合,实现了通道间的信息交互。

应用

网络结构定义

import torch.nn as nn
import torch# official pretrain weights,官网直接下载模型权重
model_urls = {'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth','vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth','vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth','vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'
}# 定义网络
class VGG(nn.module):"""features: 定义网络结构,num_classes: 分类数init_weights: 权重是否初始化"""def __init__(self, features, num_classes=1000, init_weights=False):super(VGG, self).__init__()# 特征提取网络层self.features = features# 分类层self.classifier = nn.Sequential(nn.Linear(512*7*7, 4096),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(4096, 4096),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(4096, num_classes))if init_weights:self._initialize_weights()# 前向传播def forward(self, x):# barch * 3 * 224 * 224x = self.features(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return x# 定义初始化方法def _initialize_weights(self):# 读取每层网络for m in self.modules():if isinstance(m, nn.Conv2d):# 用均匀分布进行填充nn.init.xavier_uniform_(m.weight)if m.bias is not None:# 进行数值填充nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.xavier_uniform_(m.weight)nn.init.constant_(m.bias, 0)# 将网络配置参数,转变为对应的网络结构
def make_features(cfg:list):layers = []in_channels = 3for v in cfg:if v == "M":# 网络中池化层,size=2,stride=2layers += [nn.MaxPool2d(kernel_size=2, stride=2)]else:# 卷积层 stride=1, padding=1conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)layers += [conv2d, nn.ReLU(True)]in_channels = vreturn nn.Sequential(*layers)# 配置网络参数,64代表卷积核的个数,M代表池化层
cfgs = {'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}

相关文章:

神经网络-VggNet

2014年VggNet被推出,获取了ILSVRC2014比赛分类项目的第二名,第一名是GoogleNet,该网络在下节介绍,本节主要介绍VggNet。 VggNet可以称为是一个家族,根据层数的不同包括了A、A-LRN、B、C、D等网络结构,其中…...

服务器数据恢复—Lustre分布式文件系统下服务器节点进水的数据恢复案例

服务器数据恢复环境&故障: 5台节点服务器,每台节点服务器上有一组RAID5阵列。每组RAID5阵列上有6块硬盘(其中1块硬盘设置为热备盘,其他5块硬盘为数据盘)。上层系统环境为Lustre分布式文件系统。 机房天花板漏水导致…...

实战分享:开发设计文档模版及编写要点

总框架 一、需求类开发设计文档模版 1、PRD链接 PRD文档链接 2、后端设计 1)流程图/代码逻辑描述 描述代码逻辑,要求清晰准确,尽量用图表描述 超过3人天工作量的需求必须有流程图 2)库表设计 涉及数据库的改动&#xff0c…...

一文彻底拿捏DevEco Studio的使用小技巧

程序员Feri一名12年的程序员,做过开发带过团队创过业,擅长Java相关开发、鸿蒙开发、人工智能等,专注于程序员搞钱那点儿事,希望在搞钱的路上有你相伴!君志所向,一往无前! 0.安装DevEco Studio DevEco Studio面向HarmonyOS应用及元服务开发者提供的集成开…...

Linux文件目录 --- touch命令创建文件

四、touch命令 touch命令用于创建新文件或更改现有文件的时间戳。文件的时间戳包括最后访问时间、最后修改时间和最后更改时间。 touch [选项] 文件名称 选项作用- a改变档案的读取时间记录-c 假如目的档案不存在,不会建立新的档案-d 指定时间与日期-h影响每个…...

Scala课堂小结

(一)数组: 1.不可变数组 2.创建数组...

git分支与部署环境的关系以及开发规范

一 某金融机构 1.1 分支分类以及作用 1.master master分支为主分支,用于部署生产环境的分支,无论任何时候都要确保master分支的稳定性;master分支由feature及hotfix分支合并,任何时间都不能直接修改代码。目前用于老仿真和老生产,暂时不动。 2.prod 主分支,是master…...

前端入门之VUE--ajax、vuex、router,最后的前端总结

前言 VUE是前端用的最多的框架;这篇文章是本人大一上学习前端的笔记;欢迎点赞 收藏 关注,本人将会持续更新。本人不是学前端的,这个是大一的时候上学的和做的笔记,那个时候学的也蒙,故这里对前端做一个总…...

LabVIEW实现NB-IoT通信

目录 1、NB-IoT通信原理 2、硬件环境部署 3、程序架构 4、前面板设计 5、程序框图设计 6、测试验证 本专栏以LabVIEW为开发平台,讲解物联网通信组网原理与开发方法,覆盖RS232、TCP、MQTT、蓝牙、Wi-Fi、NB-IoT等协议。 结合实际案例,展示如何利用LabVIEW和常用模块实现物联网…...

蓝牙协议——音乐启停控制

手机播放音乐 手机暂停音乐 耳机播放音乐 耳机暂停音乐...

深入理解C++ 容器类

承接Qt/C软件开发项目,高质量交付,灵活沟通,长期维护支持。需求所寻,技术正适,共创完美,欢迎私信联系! 引言 C 标准库提供了丰富的容器(container)类型,用于存…...

Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena

指令微调后的模型不一定在传统Benchmark上取得更好的结果,类似MMLU和HELM。根据人类爱好对齐后的模型,需要新的评测方法。 文章提出了两个主要内容:MT-bench和Chatbot Arena MT-bench是一系列开放式问题,用于评估聊天机器人的多回…...

Qt 的信号槽机制详解:之信号槽引发的 Segmentation Fault 问题拆析(下)

Qt 的信号槽机制详解:之信号槽引发的 Segmentation Fault 问题拆析(下) 前言一. 信号槽的误用导致崩溃的常见原因1.信号和槽连接的对象被提前释放案例解决方法 2.参数类型不匹配案例解决方法 3. 多线程信号槽使用不当案例解决方法 4. 信号重复…...

测试时计算策略(BON, stepwiseBON, beamsearch, lookahead,混合方法,计算最优扩展,过程奖励模型引导,多数投票)

、Step-wise BoN、Self-Refine、Agent Workflow 一 测试时计算 测试时计算(test-time compute),也称为推理计算,是指 LLM 生成提示响应时使用的计算资源。与用于创建和完善模型本身的训练计算不同,每次使用模型时都会…...

设置postgreSQL字段自增

CREATE SEQUENCE ai_mirror_opcode_seq START WITH 1 INCREMENT BY 1 NO MINVALUE NO MAXVALUE CACHE 1; nextval(ai_mirror_opcode_seq) 手动创建序列并设置默认值: 如果你需要更细粒度的控制,可以手动创建一个序列,并将其设置为某个字段的…...

flask-admin的modelview 实现list列表视图中扩展修改状态按钮

背景: 在flask-admin的模型视图(modelview 及其子类)中如果不想重构UI视图,那么就不可避免的出现默认视图无法很好满足需求的情况,如默认视图中只有“新增”,“编辑”,“选中的”三个按钮。 材…...

强大且灵活的终端工具Tabby的强大功能与详细配置指南

文章目录 前言1. Tabby下载安装2. Tabby相关配置3. Tabby简单操作4. ssh连接Linux4.1 ubuntu系统安装ssh4.2 Tabby远程ssh连接ubuntu 5. 安装内网穿透工具5.1 创建公网地址5.2 使用公网地址远程ssh连接 6. 配置固定公网地址 前言 大家好!今天我要给大家安利一个超级…...

dns显示不可用是怎么回事?

在互联网的世界里,DNS(域名系统)扮演着至关重要的角色。它负责将用户输入的网址(域名)转换为服务器的IP地址,从而让用户能够访问到相应的网站。然而,有时用户可能会遇到DNS显示不可用的情况,这不仅影响上网体验,还可能…...

探索Flink动态CEP:杭州银行的实战案例

摘要:本文撰写自杭州银行大数据工程师唐占峰、欧阳武林老师。将介绍 Flink 动态 CEP的定义与核心概念、应用场景、并深入探讨其技术实现并介绍使用方式。主要分为以下几个内容: Flink动态CEP简介 Flink动态CEP的应用场景 Flink动态CEP的技术实现 Flin…...

单机服务和微服务

单体服务 一种软件开发模型,它将所有的服务组件集成在一个独立的系统单位中进行开发、部署和维护。在这种架构中,前端用户界面、后端服务器逻辑、数据库操作等组件通常紧密耦合在一起,形成一个统一的程序。这种架构模式易于开发和部署&#x…...

孔雀鱼和斑马鱼能一起养吗?

在观赏鱼的世界里,孔雀鱼和斑马鱼都是备受鱼友喜爱的热门品种。它们独特的外形和相对容易的饲养条件,使得不少养鱼新手跃跃欲试将它们混养在一起,但这其中实则有诸多因素需要考量。 从生存环境来看,孔雀鱼和斑马鱼有一定的兼容性…...

作业帮基于 Apache DolphinScheduler 3_0_0 的缺陷修复与优化

文|作业帮大数据团队(阮文俊、孙建业) 背 景 基于 Apache DolphinScheduler (以下简称DolphinScheduler)搭建的 UDA 任务调度平台有效支撑了公司的业务数据开发需求,处理着日均百万级别的任务量。 整个 UDA 的架构如…...

【LC】111. 二叉树的最小深度

题目描述: 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:2示…...

HarmonyOS NEXT 实战之元服务:静态案例效果--- 歌手推荐

背景: 前几篇学习了元服务,后面几期就让我们开发简单的元服务吧,里面丰富的内容大家自己加,本期案例 仅供参考 先上本期效果图 ,里面图片自行替换 效果图1完整代码案例如下: import { authentication } …...

selenium自动化测试(超详细~)

最近也有很多人私下问我,selenium学习难吗,基础入门的学习内容很多是3以前的版本资料,对于有基础的人来说,3到4的差别虽然有,但是不足以影响自己,但是对于没有学过的人来说,通过资料再到自己写的…...

Spring Boot教程之三十一:入门 Web

Spring Boot – 入门 Web 如今,大多数应用程序都需要模型-视图-控制器(MVC) 架构来满足各种需求,例如处理用户数据、提高应用程序效率、为应用程序提供动态特性。它主要用于构建桌面图形用户界面 (GUI),但现在越来越流行用于构建基于 Web 的…...

【每日学点鸿蒙知识】指纹识别隐藏背面、数组内部值变化刷新UI、键盘输入类型、跨组件路由、C++20特性支持

1、HarmonyOS 指纹识别情况下,隐藏背面内容? 有一个场景,在指纹识别验证页面时候,此时需要用户看不到背面的内容,请问应该怎么处理这块。或者有什么方案,可以通过window,获取到当前页面的page&…...

Python数据处理——re库与pydantic的使用总结与实战,处理采集到的思科ASA防火墙设备信息

目录 Python正则表达式re库的基本用法 引入re库 各函数功能 总结 使用方法举例 正则表达式语法与书写方式 正则表达式的常用操作符 思科ASA防火墙数据 数据1 数据2 书写正则表达式 Python中pydantic的使用 导入基础数据模板 根据数据采集目标定义Pydantic数据类型…...

centos系统如何安装kubectl和部署kube-apiserver

1.使用 yum 安装&#xff08;推荐&#xff09; 添加 Kubernetes 软件源&#xff1a; 首先&#xff0c;你需要添加 Kubernetes 的官方 YUM 软件源。这可以通过下载并安装 kubernetes.repo 文件来实现。 shell cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo [k…...

【源码编译】windows下mingw64安装以及cmake调用

最近因为安装MIRTK库&#xff0c;太多第三方依赖了&#xff0c;太折磨了&#xff0c;学习了使用Cmake&#xff0c;有些库又需要Fortran编译器&#xff0c;VS2022里面装了但又调用不了&#xff0c;也不知道为什么&#xff0c;最后装的mingw64&#xff0c;记录一下。 1、mingw64安…...

HarmonyOS NEXT 实战之元服务:静态案例效果---最近播放音乐

背景&#xff1a; 前几篇学习了元服务&#xff0c;后面几期就让我们开发简单的元服务吧&#xff0c;里面丰富的内容大家自己加&#xff0c;本期案例 仅供参考 先上本期效果图 &#xff0c;里面图片自行替换 效果图1完整代码案例如下&#xff1a; Index import { authentica…...

【QT开发自制小工具】PDF/图片转excel---调用百度OCR API接口

前言 前几年WPS还可以免费处理5页以内的PDF转excel&#xff0c;现在必须付费了&#xff0c;而且百度其他在线的PDF转excel都是要收费的&#xff0c;刚好前几年调研过百度OCR的高精度含位置接口&#xff0c;依然是每天可以免费调用50次&#xff0c;本篇是基于此接口&#xff0c;…...

uniapp 基于xgplayer(西瓜视频) + renderjs开发,实现APP视频播放

背景&#xff1a;在uniapp中因原生video组件功能有限&#xff0c;选择引入xgplayer库来展示视频播放等功能。并且APP端无法操作dom&#xff0c;所以使用了renderjs。 其他的不多说&#xff0c;主要列举一下renderjs中需要注意的点&#xff1a; 1、使用&#xff1a;在标签后&…...

[1111].集成开发工具Pycharm安装与使用

所有博客大纲 后端学习大纲 Python大纲 1.下载&#xff1a; 官方下载地址 2.安装&#xff1a; 1.双击exe文件&#xff0c;然后下一步选择安装目录 2.选择桌面快捷方式及安装&#xff1a; 3.安装完成 3.启动&#xff1a; 4.设置&#xff1a; 4.1.设置运行时环境&#xff1a;…...

【玩转OCR】 | 腾讯云智能结构化OCR在多场景的实际应用与体验

文章目录 引言产品简介产品功能产品优势 API调用与场景实践图像增强API调用实例发票API调用实例其他场景 结语相关链接 引言 在数字化信息处理的时代&#xff0c;如何高效、精准地提取和结构化各类文档数据成为了企业和政府部门的重要需求。尤其是在面对海量票据、证件、表单和…...

红狮金业:2024年尾声,黄金市场需要关注的消息面

随着2024年的尾声渐近&#xff0c;全球金融市场在美联储的年度最后一次降息决策中迎来了新的波澜。上周&#xff0c;美联储宣布降息&#xff0c;而美联储主席鲍威尔随后的发言更是在市场上掀起了巨大波动。他透露&#xff0c;美联储计划在明年放缓降息步伐&#xff0c;可能仅实…...

使用BCrypt进行密码加密

1. 添加依赖&#xff1a; 在pom.xml文件中添加Spring Security依赖&#xff0c;以使用BCryptPasswordEncoder。 <!-- Spring Security 依赖 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-secu…...

《智启新材热学性能优化之路:人工智能的神奇力量》

在当今科技飞速发展的时代&#xff0c;材料科学与人工智能的融合正成为创新的前沿阵地。其中&#xff0c;利用人工智能优化材料的热学性能&#xff0c;为众多领域的突破带来了新的曙光&#xff0c;从航空航天的高效热防护到电子设备的散热管理&#xff0c;其影响深远且广泛&…...

IIC驱动EEPROM

代码参考正点原子 i2c_dri:主要是三段式状态机的编写 module iic_dri#(parameter SLAVE_ADDR 7b1010000 , //EEPROM从机地址parameter CLK_FREQ 26d50_000_000, //模块输入的时钟频率parameter I2C_FREQ 18d250_000 //IIC_SCL的时钟频率)( …...

目标检测——基于yolov8和pyqt的螺栓松动检测系统

目录 1.项目克隆和环境配置1.1 我这里使用的是v8.0.6版本1.2 项目代码结构介绍 2.数据集介绍2.1 数据集采集2.2采集结果介绍 3.模型训练4.pyqt界面设计4.1 界面内容介绍4.2 界面实现 5.操作中的逻辑实现5.1 图片检测5.2 文件夹检测5.3 视频检测和摄像头检测 6. 效果展示 1.项目…...

JVM系列(十三) -常用调优工具介绍

最近对 JVM 技术知识进行了重新整理&#xff0c;再次献上 JVM系列文章合集索引&#xff0c;感兴趣的小伙伴可以直接点击如下地址快速阅读。 JVM系列(一) -什么是虚拟机JVM系列(二) -类的加载过程JVM系列(三) -内存布局详解JVM系列(四) -对象的创建过程JVM系列(五) -对象的内存分…...

酷睿i7和i5哪个好?i5和i7的区别介绍

在英特尔酷睿处理器家族中&#xff0c;i7与i5作为面向不同用户群体的主流产品&#xff0c;各自承载着不同的性能定位与使用价值。在面对“酷睿i7和i5哪个好”的问题时&#xff0c;答案并非一概而论&#xff0c;而是取决于具体的应用需求、预算考量以及对性能与效率的期待。本文…...

实现用户登录系统的前后端开发

**一、**实验名称 实现用户登录系统的前后端开发。 **二、**参考资料 Web开发技术第一章课件。 **三、**实验目的 1.练习前端基本技术的使用。 2.练习使用Servlet/JSP开发简单后端程序。 3.练习使用Tomcat发布Web应用。 4.练习使用Spring Boot开发简单的后端程序。 **…...

Log4j1.27配置日志输出级别不起效

起因&#xff1a;构建独立版本debezuim使用时&#xff0c;日志一直打印debug信息。 原因&#xff1a;包冲突问题&#xff0c;进行排包操作。 参考log4j日志级别配置完成后不生效 系统一直打印debug日志_log4j不起作用-CSDN博客 1、application.properties logging.configc…...

一、后端到摄像头(监控摄像头IOT)

前言&#xff1a; 开发流程从 后端到摄像头 打通是第一步&#xff0c;那么我们可以着手设计 后端实现 的具体步骤&#xff0c;确保能够稳定地接收和处理来自摄像头的视频流&#xff0c;并提供后续的功能扩展&#xff0c;如视频流转发、存储和控制。 1. 后端系统架构设计 在开始…...

H3C MPLS跨域optionB

实验拓扑 实验需求 如图,VPN1 和 VPN2 分别通过运营商 MPLS VPN 连接各自分支机构按照图示配置 IP 地址,VPN1 和 VPN2 连接同一个 PE 设备的私网 IP 网段存在地址复用,使用多 VRF 技术来防止 IP 冲突AS 100 和 AS 200 内部的公共网络中各自运行 OSPF 使 AS 内各设备的 Loo…...

微信小程序中momentjs无法切换中文问题处理

微信小程序中momentj.s无法切换中文问题处理. 表现为 使用 locale(“zh-cn”)无效。 处理方法 # 1、先删除 miniprogram_npm\moment\index.js # 2、将 node_modules\moment\min\moment-with-locales.min.js 复制到 miniprogram_npm\moment下 并重命名为index.js # 3、修改mi…...

Linux零基础速成篇一(理论+实操)

前言&#xff1a;本教程适合Linux零基础学习&#xff0c;也适合Linux期末考试的小伙伴&#xff0c;从头到尾理论与实操相结合&#xff0c;让你快速对Linux进行了解和掌握。 一、Linux概述 为什么要学习Linux操作系统&#xff1f; 完全免费-开源 任何用户均可下载使用 安全…...

【087】基于51单片机智能宠物喂食器【Proteus仿真+Keil程序+报告+原理图】

☆、设计硬件组成&#xff1a;51单片机最小系统LCD1602液晶显示MY1680语音播放模块DS1302时钟芯片SG90舵机AT24C02存储芯片LED灯按键设置。 1、设计采用STC89C52、AT89C52、AT89S52作为主控芯片&#xff1b; 2、系统采用DS1302时钟芯片实现对日期时间计时并通过LCD1602液晶显…...

全局流量管理:提升用户体验与保障服务稳定性

全局流量管理的工作原理 全局流量管理主要依赖于 DNS&#xff08;域名系统&#xff09;技术&#xff0c;通过将全球用户的访问请求引导至离他们最近的服务器或数据中心&#xff0c;极大减少了访问延迟和带宽负载&#xff0c;从而提升了用户体验。同时&#xff0c;GTM 还结合健…...