当前位置: 首页 > news >正文

AI人工智能在交通物流领域的应用

AI人工智能在交通物流领域的应用

AI人工智能在交通物流领域有着广泛而深入的应用,正推动着该领域的深刻变革,以下是详细介绍:

交通领域

  • 智能驾驶
    • 自动驾驶汽车:依靠深度学习算法、计算机视觉、激光雷达和传感器融合技术,自动驾驶系统能够实时感知周围环境,做出驾驶决策。例如,特斯拉、Waymo等公司的自动驾驶汽车可以自主完成驾驶任务,减少人为驾驶带来的交通事故。虽然完全自动驾驶尚未大规模普及,但高级驾驶辅助系统(ADAS)已广泛应用于许多新型汽车,能为驾驶员提供实时路况、障碍物识别等辅助信息,提高驾驶安全性。
    • 无人驾驶公共交通:一些城市开始尝试在固定路线上运行无人驾驶的公共交通工具,如无人驾驶公交车、出租车等。通过智能感知和决策系统,这些车辆能够应对各种路况,为乘客提供安全、便捷的出行服务,同时也提高了公共交通的运营效率。
  • 交通信号控制
    • 自适应信号控制:城市交通管理部门利用AI优化交通流量,智能交通灯系统可以根据实时交通情况调整信号灯时长,优化车辆通行。通过大数据分析和机器学习模型,智能交通管理系统能够预测交通流量,动态调整交通信号。例如,北京、新加坡和洛杉矶等城市已经部署了智能交通管理系统,显著改善了交通状况。
    • 紧急车辆优先通行:在紧急情况下,AI技术可实现交通信号的优先控制,确保救护车、消防车等紧急车辆快速通行。通过与紧急车辆的定位系统和交通信号控制系统联动,当紧急车辆接近路口时,信号灯会自动调整为绿灯,保障其顺利通过。
  • 智慧停车
    • 停车位智能预约:通过APP或小程序,用户可以提前预约停车位,减少寻找停车位的时间和交通拥堵。AI系统根据停车场的实时信息和用户的预约请求,为用户分配合适的停车位,并提供导航服务。
    • 停车位智能识别与管理:利用图像识别和物联网技术,实现停车位状态的实时监测和管理。摄像头和传感器可以自动识别停车位是否被占用,并将信息上传至管理系统,方便用户查找空闲车位,也有助于停车场管理者进行高效管理。
    • 无人值守停车场:借助自动化设备和AI技术,实现停车场的无人值守和自助缴费等功能。车辆进出停车场时,系统自动识别车牌,计算停车费用,并通过电子支付方式完成缴费,提高了停车场的运营效率,降低了人力成本。
  • 公共交通调度与优化
    • 实时公交到站预测:利用AI技术和大数据分析,实现公交到站时间的实时预测,提高乘客出行效率。通过分析历史数据、实时路况和车辆位置信息,AI系统能够准确预测公交车的到站时间,让乘客合理安排出行时间。
    • 定制公交服务:根据乘客出行需求和大数据分析,提供定制化的公交服务,满足个性化出行需求。例如,针对上班族的通勤需求,开通定制公交线路,减少乘客换乘次数,提高出行的便捷性。
    • 公共交通网络优化:通过AI技术对公共交通网络进行优化设计,提高公共交通的覆盖率和便捷性。分析人口分布、出行需求和交通流量等数据,合理规划公交线路和站点布局,提高公共交通的吸引力和竞争力。

物流领域

  • 自动化仓库管理
    • 自动化货物存储和检索:利用机器人技术,如亚马逊的Kiva机器人,实现仓库内货物的自动搬运、存储和检索,提高存储效率。机器人可以根据系统指令快速准确地将货物搬运到指定位置,大大减少了人工操作的时间和错误率。
    • 实时库存监控:通过物联网传感器和数据分析技术,实时监控仓库库存情况,确保库存准确性。传感器可以实时采集货物的数量、位置等信息,上传至管理系统,当库存水平低于或高于设定阈值时,系统会自动发出警报,提醒管理人员进行调整。
    • 智能分拣系统:采用图像识别和机器学习算法,对货物进行自动分拣,提高分拣速度和准确率。例如,京东的智能分拣系统能够快速识别货物的种类、大小和目的地,将其准确分拣到不同的配送通道,提高了物流配送的效率。
  • 智能配送路线规划
    • 实时交通信息分析:利用大数据和人工智能技术,分析实时交通信息,为配送车辆提供最佳路线规划。例如,UPS的ORION系统每天为其司机规划最优路线,节省了大量燃油和时间。通过分析实时路况、交通事故等信息,AI系统能够动态调整配送路线,避开拥堵路段,确保货物按时送达。
    • 配送路线优化:通过智能算法对配送路线进行持续优化,降低运输成本和时间。考虑订单优先级、客户位置、交通状况等因素,AI系统可以计算出最优的配送顺序和路线,提高配送效率,减少运输成本。
  • 需求预测
    • 销售模式和趋势识别:物流公司通过AI预测客户需求,优化库存和配送策略,避免过多的存货或缺货现象。例如,京东使用AI技术分析历史销售数据和市场趋势,准确预测未来的需求。通过时间序列分析、回归模型和深度学习算法,AI系统能够识别销售模式和趋势,进行准确的需求预测。
    • 库存和运力规划:根据需求预测结果,物流企业可以合理规划库存和运力,提高资源利用效率。提前准备好足够的货物库存,安排合适的运输车辆和人员,确保能够及时满足客户的订单需求,提高客户满意度。
  • 无人机和机器人配送服务
    • 无人机配送:利用无人机技术进行空中配送,适用于偏远地区或城市高峰时段。无人机可以避开地面交通拥堵,快速将货物送达目的地。例如,在一些山区或海岛地区,无人机配送可以解决交通不便带来的配送难题。
    • 地面机器人配送:采用地面机器人进行短途配送,减轻人工配送负担,提高配送效率。机器人可以在小区、校园等相对封闭的环境中自主导航,将货物送到指定地点。一些快递公司已经在部分区域试点地面机器人配送服务,取得了良好的效果。

安全与效率提升方面

  • 事故预测与预防
    • 事故风险识别:AI系统可以通过分析历史交通事故数据和实时交通信息,预测潜在的事故风险,提前采取预防措施。例如,通过数据挖掘和机器学习模型,识别事故高发区域和时间,为交通管理部门提供预警和决策支持,以便采取加强交通监管、改善道路设施等措施。
    • 实时监控与干预:智能交通监控系统可以实时检测交通违章行为,如超速、闯红灯等,并及时进行干预。通过图像识别和智能分析技术,对交通违法行为进行抓拍和记录,通知执法人员进行处理,从而减少交通事故的发生。
  • 车辆维护与管理
    • 车辆运行状态监测:物流公司利用AI监控车辆的运行状态,预测和预防故障,优化维护计划,减少车辆故障率和维护成本。通过传感器数据和机器学习模型,实时监测车辆的关键参数,如发动机温度、轮胎压力、行驶里程等,及时发现潜在的故障隐患。
    • 故障预测和健康管理:基于历史数据和实时监测信息,AI系统能够对车辆的故障进行预测,提前安排维修保养,避免因突发故障导致的服务中断。例如,通过分析车辆的运行数据,预测发动机可能出现的故障,提前通知驾驶员进行维修,确保车辆的安全运行。

AI人工智能在交通物流领域的应用,极大地提高了行业的效率、降低了成本、增强了安全性,为交通物流行业的发展带来了新的机遇和挑战。随着技术的不断进步,AI在交通物流领域的应用将会更加广泛和深入,推动行业向智能化、高效化、绿色化方向发展。

相关文章:

AI人工智能在交通物流领域的应用

AI人工智能在交通物流领域的应用 AI人工智能在交通物流领域有着广泛而深入的应用,正推动着该领域的深刻变革,以下是详细介绍: 交通领域 智能驾驶 自动驾驶汽车:依靠深度学习算法、计算机视觉、激光雷达和传感器融合技术&#x…...

牛客网NC22222:超半的数

牛客网NC22222:超半的数 题目描述 输入输出格式 输入格式: 第一行包含一个整数 n (1 ≤ n ≤ 1000)第二行包含 n 个整数 a_i (1 ≤ a_i ≤ 10^9) 输出格式: 输出一个整数,表示出现次数超过一半的那个数 解题思路 这道题目有多种解法&a…...

在服务器上安装AlphaFold2遇到的问题(2)

如何删除已安装的cuDNN 1. 通过包管理器卸载(推荐) RHEL/CentOS (dnf/yum) #查看已安装的 cuDNN 包 sudo dnf list installed | grep cudnn #卸载 cuDNN 运行时和开发包 sudo dnf remove -y libcudnn* libcudnn8* libcudnn-devel* Ubuntu/Debian (ap…...

【2025年软考中级】第一章1.5 输入输出技术(外设)

文章目录 输入输出技术(外设)I/O设备总线结构输入输出控制程序控制方式中断方式直接内存存取(DMAC)方式IO通道方式和外围处理机(IOP)方式 数据传输方式生物特征认证技术 输入输出技术(外设&…...

2025 家用投影新标杆:雷克赛恩 CyberPro1 如何重新定义客厅观影体验

目录 一、家庭影音升级:从 “看得清” 到 “看得精” 的需求之变 (一)传统投影的痛点突围 (二)技术参数背后的用户价值 二、全天候观影无忧:亮度与环境光的博弈艺术 (一)真实亮…...

[基础] HPOP、SGP4与SDP4轨道传播模型深度解析与对比

HPOP、SGP4与SDP4轨道传播模型深度解析与对比 文章目录 HPOP、SGP4与SDP4轨道传播模型深度解析与对比第一章 引言第二章 模型基础理论2.1 历史演进脉络2.2 动力学方程统一框架 第三章 数学推导与摄动机制3.1 SGP4核心推导3.1.1 J₂摄动解析解3.1.2 大气阻力建模改进 3.2 SDP4深…...

12 web 自动化之基于关键字+数据驱动-反射自动化框架搭建

文章目录 一、如何实现一条用例,实现覆盖所有用例的测试1、结合数据驱动:编辑一条用例,外部导入数据实现循环测试2、用例体:实现不同用例的操作步骤对应的断言 二、实战1、项目路径总览2、common 文件夹下的代码文件3、keywords 文…...

学习状态不佳时的有效利用策略

当学习状态不佳时,可以尝试以下策略,将这段时间转化为有意义的活动,既不勉强自己又能为后续高效学习铺路: 1. 整理与规划:低精力高回报任务 整理学习环境:收拾书桌、归类资料、清理电脑文件,减…...

Spring Cloud深度实践:从服务发现到弹性智能API网关全景解析

引言 大家好!继初步搭建了微服务基础架构后,我们进一步深入到服务调用的优化、系统的弹性构建以及API网关的高级应用。本文将全面回顾这一进阶阶段的实践成果,通过更丰富的图解,力求清晰展现各核心组件的工作原理与协同方式。 项…...

第J1周:ResNet-50算法实战与解析

🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍖 原作者:K同学啊 我的环境 语言环境:Python3.8 编译器:Jupyter Lab 深度学习环境:Pytorchtorch1.12.1cu113 torchvision0.13.1cu113 一、准备工作 二、导入数据 三、划分数据…...

PCL 计算一条射线与二次曲面的交点

文章目录 一、简介二、实现代码三、实现效果一、简介 对于二次曲面而言,其一般方程可以写为: z = a 0 + a 1 x + a 2 y + a...

Executors类详解

Executors类详解 Executors 是Java中用于快速创建线程池的工具类,提供了一系列工厂方法,简化了 ThreadPoolExecutor 和 ScheduledThreadPoolExecutor 的配置。以下是其核心方法、实现原理及使用注意事项: 1. 常用线程池工厂方法 (1) newFixedThreadPool 作用:创建固定大小…...

学习alpha

(sign(ts_delta(volume, 1)) * (-1 * ts_delta(close, 1))) 这个先用sign操作符 sign.如果输入NaN则返回NaN 在金融领域,符号函数 sign(x) 与 “基础”(Base)的组合概念可结合具体场景解读,以下从不同金融场景分析其潜在意义&…...

6种方式来探究数据集的的方法worldquant

覆盖率百分比 指金融数据字段(如股价、成交量、财务指标)在时间或空间上的有效数据比例。 时间维度:数据在历史周期内的完整度(如:某股票过去 1 年中,95% 的交易日有收盘价)。空间维度&#xf…...

MiniMax语音模型Speech-02近日登顶多个全球榜单,详细技术解析

MiniMax最新发布的Speech-02把TTS领域传统巨头OpenAI、ElevenLabs拉下马来,直接登顶智能语音权威榜单Artificial Arena,不管是WER(字错率),还是SIM(声纹相似度)等客观指标都领先国外顶级模型&am…...

JavaScript 时间转换:从 HH:mm:ss 到十进制小时及反向转换

关键点 JavaScript 可以轻松实现时间格式(HH:mm:ss 或 HH:mm)与十进制小时(如 17.5)的相互转换。两个函数分别处理时间字符串到十进制小时,以及十进制小时到时间字符串的转换,支持灵活的输入和输出格式。这…...

前端面经 手写Promise

核心功能 仿Promise对象需要接收包含两个变量的回调函数 构造函数 <script>class myPromise {constructor(func){const resolve (result)>{console.log(resolve执行了)}const reject (result)>{console.log(reject执行了)}func(resolve,reject)}}// Promise的…...

JavaSE基础语法之方法

方法 一、方法入门 1.方法定义 方法是一种语法结构&#xff0c;它可以把一段代码封装成一个功能&#xff0c;以便重复调用。 2.方法的格式 修饰符 返回值类型 方法名( 形参列表 ){方法体代码(需要执行的功能代码) }示例&#xff1a; public static int sum ( int a ,…...

在 Neo4j 中实现向量化存储:从文本到高效语义搜索

在当今数据驱动的时代&#xff0c;图数据库因其强大的关系表达能力和高效的查询性能&#xff0c;逐渐成为处理复杂数据结构的首选工具之一。Neo4j 作为领先的图数据库&#xff0c;不仅支持传统的图数据存储和查询&#xff0c;还通过向量化存储功能&#xff0c;为语义搜索和推荐…...

三格电子上新了——IO-Link系列集线器

一、产品概述 1.1产品用途 IO-Link系列集线器是一系列数字量输入输出I/O设备&#xff0c;可以将标准开关量信号接入到此设备。通过此集线器方便的将大量的I/O点位接入到IO-Link主站&#xff0c;进而接入到PLC控制系统。 IO-Link通信接口和8个I/O接口(16个IO点位)均采用M12规…...

记一次从windows连接远程Linux系统来控制设备采集数据方法

文章目录 0 引入1、方法2、优化Process使用 3、引用 0 引入 最近使用的探测器是老外的&#xff0c;老外的探测器需要在centos系统上&#xff0c;在这系统上有相应的指令或者软件控制&#xff0c;但是我们的软件在windwons上&#xff0c;所以目前的困难是&#xff1a;如何在Win…...

鸿蒙 ArkTS 常用的数组和字符串 操作方法

数组的常用方法 方法名功能描述concat(value0, ?value1, /* … ,*/ ?valueN)合并两个或多个数组。此方法不会更改现有数组&#xff0c;而是返回一个新数组copyWithin(target, ?start, ?end)浅复制数组的一部分到同一数组中的另一个位置&#xff0c;并返回它&#xff0c;不…...

Web性能优化的未来:边缘计算、AI与新型渲染架构

一、边缘计算与性能优化深度整合 1.1 边缘节点计算卸载策略 • 智能任务分割:将非关键路径计算卸载到边缘节点 // 客户端代码 const edgeTask = new EdgeTask(image-processing); edgeTask.postMessage(imageData, {transfer...

Python字符串常用内置函数详解

文章目录 Python字符串常用内置函数详解一、基础字符串函数1. len() - 获取字符串长度2. ord() - 获取字符的Unicode码点3. chr() - 通过Unicode码点获取字符4. ascii() - 获取字符的ASCII表示 二、类型转换函数1. str() - 将对象转为字符串2. repr() - 获取对象的官方字符串表…...

2025程序设计天梯赛补题报告

2025程序设计天梯赛补题报告 仅包含L1 L2 L1-6 这不是字符串题 题目描述 因为每年天梯赛字符串题的解答率都不尽如人意&#xff0c;因此出题组从几年前开始决定&#xff1a;每年的天梯赛的 15 分一定会有一道字符串题&#xff0c;另外一道则一定不是字符串题。 小特现在有…...

【GNN笔记】Signed Graph Convolutional Network(12)【未完】

视频链接&#xff1a;《图神经网络》 Signed Graph Convolutional Network 之前介绍的GNN模型主要集中在无符号的网络&#xff08;或仅由正链接组成的图&#xff09;上&#xff0c;符号 图带来的挑战&#xff0c;主要集中在于 否定链接&#xff0c;与正链接相比&#xff0c;它不…...

CSR、SSR与ISR的奇妙之旅

网页渲染三剑客:CSR、SSR与ISR的奇妙之旅 三种渲染方式的核心本质 CSR(客户端渲染)让浏览器成为"厨师",SSR(服务器端渲染)让服务器担任"厨师",而ISR(增量静态再生)则是一位兼具"提前备餐"和"即时烹饪"能力的"超级厨师"…...

YOLO+UI(C#)开发

接Windows目标检测程序开发&#xff08;YOLO&#xff08;python推理&#xff09;界面开发&#xff08;C#&#xff09;&#xff09; C#作为软件界面&#xff0c;推理、前处理、后处理逻辑全部python&#xff0c;接任何功能定制...

生产级JVM参数优化

Spring Boot 应用性能提升 300% 当你的 Spring Boot 应用响应迟缓&#xff0c;且已采用缓存、数据库索引和异步处理优化后&#xff0c;下一个优化方向在哪里&#xff1f;我的答案是 JVM 本身。 经过性能分析和深入研究&#xff0c;我发现合理配置 JVM 参数可以带来显著的性能…...

什么是SMBus

一、SMBus的定义与背景 基本概念 SMBus&#xff08;System Management Bus&#xff0c;系统管理总线&#xff09; 是一种基于IC&#xff08;Inter-Integrated Circuit&#xff09;协议的轻量级两线制串行通信总线&#xff0c;由Intel于1995年提出&#xff0c;主要用于低带宽系统…...

[Unity]AstarPathfindingProject动态烘焙场景

需求 项目是MMO大场景&#xff0c;按地块划分了10x10的大格子。角色移动时动态更新周边场景&#xff0c;且角色还有传送功能。 项目中寻路用了AstarPathfindingProject的Grid。因此需要动态烘焙寻路信息。 核心代码 private void bakeAStarPath(){AstarPath astarPath Astar…...

Go语言处理HTTP下载中EOFFailed

在 Go 语言中使用 HTTP 下载文件时遇到 EOF 或 Failed 错误&#xff0c;通常是由于网络连接问题、服务器中断、未正确处理响应体或并发写入冲突等原因导致的。以下是详细的解决方案&#xff1a; 1. 检查错误类型并重试 io.EOF 错误可能表示连接被服务器关闭&#xff0c;而 Fai…...

React学习(一)

React 基础概念 组件&#xff1a;React 应用的基本构建块&#xff0c;可以是类组件或函数组件。JSX&#xff1a;JavaScript 的语法扩展&#xff0c;允许在 JavaScript 中写 HTML 结构。Props&#xff1a;组件的输入参数&#xff0c;用于父组件向子组件传递数据。State&#xf…...

QML 属性动画、行为动画与预定义动画

目录 引言相关阅读本文使用的动画属性工程结构示例解析示例1&#xff1a;属性动画应用示例2&#xff1a;行为动画实现示例3&#xff1a;预定义动画 总结工程下载 引言 QML动画系统为界面元素提供了流畅的过渡效果。本文通过三个示例&#xff0c;结合属性动画(PropertyAnimatio…...

UML活动图零基础入门:1 分钟掌握核心逻辑(附实战模板)

想快速搞懂UML活动图怎么用&#xff1f;别担心&#xff01;作为软件开发和业务流程设计的动态流程图&#xff0c;UML活动图能直观展现系统操作步骤、决策逻辑和并行流程&#xff0c;是团队协作中沟通需求、优化流程的必备工具。无论是产品经理梳理业务流程&#xff0c;还是开发…...

临床决策支持系统的提示工程优化路径深度解析

引言 随着人工智能技术在医疗领域的迅猛发展,临床决策支持系统(CDSS)正经历从传统规则引擎向智能提示工程的范式转变。在这一背景下,如何构建既符合循证医学原则又能适应个体化医疗需求的CDSS成为医学人工智能领域的核心挑战。本报告深入剖析了临床决策支持系统中提示工程的…...

[模型部署] 3. 性能优化

&#x1f44b; 你好&#xff01;这里有实用干货与深度分享✨✨ 若有帮助&#xff0c;欢迎&#xff1a;​ &#x1f44d; 点赞 | ⭐ 收藏 | &#x1f4ac; 评论 | ➕ 关注 &#xff0c;解锁更多精彩&#xff01;​ &#x1f4c1; 收藏专栏即可第一时间获取最新推送&#x1f514;…...

使用 LSTM/GRU 预测设备异常的模型

LSTM(Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,旨在解决传统 RNN 在处理长序列数据时的梯度消失和梯度爆炸问题。它通过引入门控机制和单元状态来更好地控制信息的流动,使得网络能够学习到长期依赖关系。以下是其主要特点: 门控机制:包括遗忘门、输…...

八股文--JVM(1)

⭐️⭐️JVM内存模型 程序计数器&#xff1a;可以看作是当前线程所执行的字节码的行号指示器&#xff0c;用于存储当前线程正在执行的 Java 方法的 JVM 指令地址。如果线程执行的是 Native 方法&#xff0c;计数器值为 null。是唯一一个在 Java 虚拟机规范中没有规定任何 OutOf…...

BM25 算法与关键词提取在向量数据库中的实践优化

BM25 算法与关键词提取在向量数据库中的实践优化 在实际构建问答系统或语义检索场景中&#xff0c;向量数据库&#xff08;如 Weaviate&#xff09;提供了基于语义匹配的检索能力&#xff0c;然而我们发现 BM25 关键词检索效果不理想&#xff0c;甚至出现了召回率过低、查询必…...

济南超算研究所面试问题

1.自我介绍 2.java抽象类与接口的区别 3.抽象类能否实例化 4.在项目中用的抽象类偏多还是接口偏多 5.抽象类用的场景介绍一下 6.java中数据结构有哪些 7.数据的基本类型 8.引用类型&#xff0c;包装类型 9.是一个场景题&#xff0c;在查询数据库中的数据时&#xff0c;…...

“多维像素”可赋能具身智能非凡感知力——昱感微参加2025松山湖中国IC创新高峰论坛

5月13日&#xff0c;由中国半导体行业协会集成电路设计分会、芯原微电子&#xff08;上海&#xff09;股份有限公司联合主办的第十五届松山湖中国IC创新高峰论坛在东莞松山湖举行。本届松山湖论坛以“面向‘具身智慧机器人’的创新IC新品推介”为主题&#xff0c;吸引了许多知名…...

解决CLion控制台不能及时显示输出的问题

CLion 2025版本可以免费用于非商业用途了&#xff0c;下载来试用了一下&#xff0c;与JB的其它 IDE一样的资源占用比较大&#xff0c;流畅度不及VSCode。 在Windows下创建了一个简单的控制台应用程序&#xff0c;使用printf和std::cout输出字符串&#xff0c;发现CLion的控制台…...

多尺度对比度调整

一、背景介绍 受到了前面锐化算法实现的启发&#xff0c;对高频层做增强是锐化&#xff0c;那么对中低频一起做增强&#xff0c;就应该能有局域对比度增强效果。 直接暴力实现了个基本版本&#xff0c;确实有对比度增强效果。然后搜了下关键字&#xff0c;还真找到了已经有人这…...

虹桥前湾印象城MEGA品牌大会灵感迸发,共绘湾系生活新章

前言&#xff1a;当千年水韵流淌至上海前湾&#xff0c;当苏州河的生态肌理转化为商业空间的呼吸脉络……上海虹桥前湾印象城MEGA“漫漫而来”。 5月15-16日&#xff0c;以“灵感新章 Wave of Megagination”为主题的虹桥前湾印象城MEGA品牌大会成功举办&#xff0c;正式掀开长…...

新京东,正在成为一种生活方式

出品|何玺排版|叶媛 一个新京东&#xff0c;正在从“心”诞生。 2025年2月11日之前&#xff0c;如果问京东是做什么的&#xff0c;相信大多数人会回答京东是电商平台&#xff0c;卖家电数码日用百货的。现在&#xff0c;如果问京东是做什么的&#xff0c;相信大家的回答不在是…...

读论文alexnet:ImageNet Classification with Deep Convolutional Neural Networks

https://zhuanlan.zhihu.com/p/13694329885 1, 公式 卷积层输出尺寸&#xff1a; o ⌊(i 2p - k) / s⌋ 1 式中&#xff0c;i:输入尺寸&#xff1b;o:输出尺寸&#xff1b;p:padding&#xff1b;k: kernel_size&#xff1b;s: stride。⌊…⌋表示向下取整。 2, 推导过程 …...

操作系统|| 虚拟内存页置换算法

题目 写一个程序来实现 FIFO 和 LRU 页置换算法。首先&#xff0c;产生一个随机的页面引用序列&#xff0c;页面数从 0~9。将这个序列应用到每个算法并记录发生的页错误的次数。实现这个算法时要将页帧的数量设为可变。假设使用请求调页。可以参考所示的抽象类。 抽象类&…...

AGI大模型(19):下载模型到本地之ModelScope(魔搭社区)

1 安装模块 魔塔社区提供了下载的模块&#xff0c;如下&#xff1a; pip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple 2 模型下载 from modelscope import snapshot_download model_dirsnapshot_download(LLM-Research/Meta-Llama-3-8B,cache_dirrD:\…...

常见面试题

1.stringbuffer和stringbuilder的区别&#xff0c;stringbuffer是通过什么实现线程安全的? StringBuffer 和 StringBuilder 都是用于处理可变字符串的类&#xff0c;但它们的主要区别在于 线程安全性。 StringBuffer 的线程安全是通过方法加锁&#xff08;synchronized&…...