当前位置: 首页 > news >正文

AI、机器学习、深度学习:一文厘清三者核心区别与联系


AI、机器学习、深度学习:一文厘清三者核心区别与联系


在这里插入图片描述
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。
https://www.captainbed.cn/ccc

在这里插入图片描述

前言

在人工智能技术席卷全球的今天,“AI”、“机器学习”、"深度学习"等术语频繁出现在各类报道和技术文档中。这些概念看似相似,实则存在本质区别。理解它们的差异,是掌握现代智能技术发展趋势的基础。本文将通过技术原理、应用场景和依赖关系的三维对比,彻底厘清三者关系。


一、概念全景图:从宏观到微观的包含关系

人工智能 Artificial Intelligence
机器学习 Machine Learning
深度学习 Deep Learning
规则系统 Rule-Based Systems
专家系统 Expert Systems

1.1 人工智能(AI)

定义:让机器模拟人类智能行为的科学与工程。
范畴

  • 任何使计算机表现出智能的技术
  • 不限定实现方式(可以是硬编码规则或数据驱动)
    经典应用
  • 1997年击败国际象棋冠军的IBM深蓝
  • 银行风控系统中的欺诈交易识别规则

1.2 机器学习(ML)

定义:通过数据自动发现规律,并基于规律做出预测的AI子领域。
核心特征

  • 依赖数据而非显式编程
  • 模型性能随数据量提升
    典型场景
  • 电商推荐系统(协同过滤算法)
  • 垃圾邮件分类(朴素贝叶斯)

1.3 深度学习(DL)

定义:基于深层神经网络架构的机器学习方法。
技术突破

  • 自动特征提取(无需人工设计特征)
  • 处理非结构化数据(图像/语音/文本)能力飞跃
    里程碑案例
  • AlphaGo击败围棋世界冠军
  • GPT-4实现类人对话生成

二、技术对比:三者的核心差异

维度人工智能(AI)机器学习(ML)深度学习(DL)
实现方式包含规则系统与数据驱动必须依赖数据训练必须使用深度神经网络
数据需求可无数据(规则驱动)需要结构化数据需要海量标注数据
特征处理人工设计逻辑人工设计特征 + 算法学习自动提取多层次抽象特征
硬件依赖CPU即可运行中等算力需求必须GPU/TPU加速
可解释性高(规则明确)中等低(黑箱问题)
典型算法A*寻路算法随机森林/SVM卷积神经网络/Transformer

三、技术演进:从逻辑规则到自主进化

3.1 第一代AI:符号主义(1950s-1980s)

# 基于规则的医疗诊断系统示例
def diagnose(symptoms):if symptoms['fever'] > 38 and symptoms['cough']:return "流感"elif symptoms['rash'] and symptoms['itch']:return "过敏"else:return "未知"

局限:无法处理模糊信息,需要人工编写所有可能情况。

3.2 第二代AI:机器学习(1990s-2010s)

# 使用Scikit-learn构建房价预测模型
from sklearn.ensemble import RandomForestRegressormodel = RandomForestRegressor()
model.fit(X_train, y_train)  # X_train: 房屋面积/楼层等特征
predictions = model.predict(X_test)

突破:自动从历史交易数据中发现价格规律。

3.3 第三代AI:深度学习(2012至今)

# 使用PyTorch构建图像分类CNN
import torch.nn as nnclass CNN(nn.Module):def __init__(self):super().__init__()self.conv_layers = nn.Sequential(nn.Conv2d(3, 32, kernel_size=3),  # 自动提取边缘纹理特征nn.ReLU(),nn.MaxPool2d(2))self.fc = nn.Linear(32*14*14, 10)model = CNN()
# 模型自动学习从像素到物体类别的映射

革命性:无需人工设计特征,端到端学习复杂模式。


四、应用场景对比

4.1 各技术适用领域

场景传统AI机器学习深度学习
信用卡欺诈检测✔️✔️✔️(复杂模式)
工厂机械臂控制✔️
医学影像分析✔️✔️(SOTA效果)
客户服务聊天机器人✔️(有限)✔️✔️(GPT-4级对话)
自动驾驶决策✔️(感知+决策)

4.2 选择技术的决策树

明确规则可描述
数据可用但特征复杂
结构化数据+可解释需求
问题类型
传统AI
深度学习
机器学习
例如工业控制
例如图像识别
例如信用评分

五、常见误区澄清

误区1:深度学习就是AI的终极形态

事实

  • 深度学习在感知任务中表现卓越,但在需要逻辑推理的领域(如数学证明)仍不如传统符号AI
  • 混合智能系统(Neuro-Symbolic AI)正在兴起

误区2:机器学习必须使用神经网络

事实

  • 直到2010年,主流ML算法仍是SVM/随机森林等
  • 当前仍有75%的工业级ML模型基于非神经网络方法

误区3:AI系统会自主进化

事实

  • 现有AI的所有"智能"都源于人类设计架构+数据训练
  • 真正的自主意识仍是理论假设

六、总结:技术选型指南

考虑因素优选技术案例
数据稀缺传统AI/规则引擎银行反洗钱规则
可解释性要求高机器学习医疗诊断辅助系统
处理非结构化数据深度学习自动驾驶视觉感知
硬件资源有限传统AI/经典ML工厂设备预测性维护
需要持续在线学习深度学习+强化学习推荐系统实时个性化

未来趋势

  • 小型化:轻量级模型部署至边缘设备
  • 多模态:文本/图像/语音联合建模
  • 因果推理:突破相关性学习局限

在这里插入图片描述

相关文章:

AI、机器学习、深度学习:一文厘清三者核心区别与联系

AI、机器学习、深度学习:一文厘清三者核心区别与联系 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/ccc 前言 在人工智能技术席卷全球的今天&…...

《数字藏品社交化破局:React Native与Flutter的创新实践指南》

NFT,这种非同质化代币,赋予了数字资产独一无二的身份标识,从数字艺术作品到限量版虚拟物品,每一件NFT数字藏品都承载着独特的价值与意义。当React Native和Flutter这两大跨平台开发框架遇上NFT数字藏品,一场技术与创意…...

工业操作系统核心技术揭秘

摘要 随着工业 4.0 与智能制造的深入推进,工业操作系统作为工业数字化转型的核心支撑,其技术发展备受关注。本文深入剖析工业操作系统的核心技术,包括实时性保障机制、硬件抽象层设计、多任务管理策略等,结合技术原理与实际应用场…...

Python logging模块使用指南

Python 的 logging 模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查。它提供了丰富的功能,包括多级日志记录、多种输出方式、灵活的格式配置等。以下是详细介绍: 一、为什么使用 logging 模块?…...

沃伦森智能无功补偿系统解决电力电容器频繁投切的隐患

在现代电力系统中,无功补偿设备的稳定运行直接影响电网质量。然而,电力电容器的频繁投切问题长期存在,如同电网的“慢性病”,不仅加速设备老化,还可能引发系统性风险。作为电力电子领域的领军企业,沃伦森电…...

【HarmonyOS 5】鸿蒙mPaaS详解

【HarmonyOS 5】鸿蒙mPaaS详解 一、mPaaS是什么? mPaaS 是 Mobile Platform as a Service 的缩写,即移动开发平台。 蚂蚁移动开发平台mPaaS ,融合了支付宝科技能力,可以为移动应用开发、测试、运营及运维提供云到端的一站式解决…...

PyTorch中.item()函数:提取单元素张量值

PyTorch中,.item()函数是什么 在PyTorch代码中,.item() 主要用于从一个只包含单个元素的张量(Tensor)中提取出对应的Python标量值 ,具体作用和使用场景如下: 作用 获取数值:当通过计算得到一个张量,且该张量仅包含一个元素时,使用 .item() 方法可以方便地将这个元素…...

PyTorch LSTM练习案例:股票成交量趋势预测

文章目录 案例介绍源码地址代码实现导入相关库数据获取和处理搭建LSTM模型训练模型测试模型绘制折线图主函数 绘制结果 案例介绍 本例使用长短期记忆网络模型对上海证券交易所工商银行的股票成交量做一个趋势预测,这样可以更好地掌握股票买卖点,从而提高…...

ARM A64 LDR指令

ARM A64 LDR指令 1 LDR (immediate)1.1 Post-index1.2 Pre-index1.3 Unsigned offset 2 LDR (literal)3 LDR (register)4 其他LDR指令变体4.1 LDRB (immediate)4.1.1 Post-index4.1.2 Pre-index4.1.3 Unsigned offset 4.2 LDRB (register)4.3 LDRH (immediate)4.3.1 Post-index…...

一些问题杂记

1. 在 SSH 会话/bash中仅使用cat命令查看文件后使用umount命令提示挂载点繁忙,lsof命令查看是bash有占用,但是并没有打开文件之类的情况 原因:当前工作目录仍在挂载点内,使用cat查看文件时,可能当前工作目录&#xff…...

【OpenGL学习】(一)创建窗口

文章目录 【OpenGL】(一)创建窗口 【OpenGL】(一)创建窗口 GLFW OpenGL 本身只是一套图形渲染 API,不提供窗口创建、上下文管理或输入处理的功能。 GLFW 是一个支持创建窗口、处理键盘鼠标输入和管理 OpenGL 上下文的…...

RTSP 播放器技术探究:架构、挑战与落地实践

RTSP 播放器为什么至今无法被淘汰? 在实时视频传输领域,RTSP(Real-Time Streaming Protocol)作为最基础、最常见的协议之一,至今依然被广泛用于监控设备、IP Camera、视频服务器等设备中。然而,要构建一个稳…...

【问题记录】08 MAC电脑,安装HP打印机驱动,提示:此更新需要macOS版本15.0或更低版本

问题描述: MAC电脑,升级了新系统之后(v15.4.1)。 这时,安装惠普(HP)打印机驱动,提示:This update requires macOS version 15.0 or earlier(此更新需要macOS…...

场景新零售:基于开源AI大模型AI智能名片S2B2C商城小程序源码的商业本质回归与创新

摘要:本文聚焦场景新零售,探讨在新生代消费群体推动下传统零售模式的创新升级。通过分析新生代消费群体的特点以及场景新零售的发展趋势,阐述开源AI大模型AI智能名片S2B2C商城小程序源码在场景新零售中的应用优势,包括精准营销、供…...

16.2 VDMA视频转发实验之模拟源

文章目录 1 实验任务2 系统框图3 硬件设计3.1 IP核配置3.2 注意事项3.3 自定义IP核源码 1 实验任务 基于14.1,相较于16.1,使用自定义IP核vid_gen_motion替换Xilinx TPG IP核。 2 系统框图 基于14.1,添加自定义IP核vid_gen_motion作为视频源…...

PADS 9.5安装教程

1.安装包 https://pan.baidu.com/s/1bt6vE3y8VEmlFwJfoV32nA?pwdj2cg 2.PADS 9.5安装教程 PADS 9.5安装教程(Windows11、超详细版)_pads9.5-CSDN博客 3.出现的问题 1.打开无法使用鼠标滚轮 Win10 pads卡死问题解决,输入法的兼容性问…...

趣味编程:钟表

目录 1. 效果展示 2. 源码展示 3. 逻辑概述 3.1 表针绘制函数(DrawHand) 3.2 表盘绘制函数 3.3 主程序逻辑 4. 小结 概述:本篇博客主要介绍简易钟表的绘制。 1. 效果展示 该钟表会随着系统的时间变化而变化,动态的效…...

.NET 通过命令行解密web.config配置

在.NET应用系统中,保护数据库连接字符串的安全性至关重要。.NET 提供了一种通过 DataProtectionConfigurationProvider 加密连接字符串的方法,以防止敏感数据泄露。然而,在内网信息收集阶段,攻击者只需在目标主机上运行aspnet_regiis.exe这个命令行工具即可完成解密,获取数…...

【MySQL】多表连接查询

个人主页:Guiat 归属专栏:MySQL 文章目录 1. 多表连接查询概述1.1 连接查询的作用1.2 MySQL支持的连接类型 2. 内连接 (INNER JOIN)2.1 内连接的特点2.2 内连接语法2.3 内连接实例2.4 多表内连接 3. 左外连接 (LEFT JOIN)3.1 左外连接的特点3.2 左外连接…...

【AI论文】用于评估和改进大型语言模型中指令跟踪的多维约束框架

摘要:接下来的指令评估了大型语言模型(LLMs)生成符合用户定义约束的输出的能力。 然而,现有的基准测试通常依赖于模板化的约束提示,缺乏现实使用的多样性,并限制了细粒度的性能评估。 为了填补这一空白&…...

应用BERT-GCN跨模态情绪分析:贸易缓和与金价波动的AI归因

本文运用AI量化分析框架,结合市场情绪因子、宏观经济指标及技术面信号,对黄金与美元指数的联动关系进行解析,揭示本轮贵金属回调的深层驱动因素。 周三,现货黄金价格单日跌幅达2.1%,盘中触及3167.94美元/盎司关键价位&…...

低成本高效图像生成:GPUGeek和ComfyUI的强强联合

一、时代背景 在如今的数字化时代,图像生成技术正不断发展和演变,尤其是在人工智能领域。无论是游戏开发、虚拟现实,还是设计创意,图像生成已成为许多应用的核心技术之一。然而,随着图像质量需求的提升,生成…...

React 第四十二节 Router 中useLoaderData的用途详解

一、前言 useLoaderData,用于在组件中获取路由预加载的数据。它通常与路由配置中的 loader 函数配合使用,用于在页面渲染前异步获取数据(如 API 请求),并将数据直接注入组件,从而简化数据流管理。 二、us…...

【NLP 74、最强提示词工程 Prompt Engineering 从理论到实战案例】

一定要拼尽全力,才能看起来毫不费劲 —— 25.5.15 一、提示词工程 1.提示词工程介绍 Ⅰ、什么是提示词 所谓的提示词其实就是一个提供给模型的文本片段,用于指导模型生成特定的输出或回答。提示词的目的是为模型提供一个任务的上下文,以便模…...

GPUGeek云平台实战:DeepSeek-R1-70B大语言模型一站式部署

随着人工智能技术的迅猛发展,特别是在自然语言处理领域,大型语言模型如DeepSeek-R1-70B的出现,推动了各行各业的变革。为了应对这些庞大模型的计算需求,云计算平台的普及成为了关键,特别是基于GPU加速的云平台&#xf…...

【抽丝剥茧知识讲解】引入mybtis-plus后,mapper实现方式

目录 前言一、传统 Mapper 接口方式二、继承 BaseMapper 的方式三、自定义通用 Mapper 的方式四、使用 MyBatis-Plus 的 ActiveRecord 模式五、使用 MyBatis-Plus 的 IService 接口六、使用建议 前言 mapper文件,作为Mybatis框架中定义SQL语句和映射关系的配置文件&…...

AI浪潮:开启科技新纪元

AI 的多面应用​ AI 的影响力早已突破实验室的围墙,在众多领域落地生根,成为推动行业变革的重要力量。 在医疗领域,AI 宛如一位不知疲倦的助手,助力医生提升诊疗效率与准确性。通过对海量医学影像的深度学习,AI 能够快…...

制造业工厂的三大核心系统:ERP+PLM+MES

对于一家制造业工厂来说,要实现数字化转型,哪几个系统最重要?答案是:ERP,PLM和MES这三个核心系统最为重要!本文就为你快速地概览地介绍一下这三个系统 以及 它们之间的关联关系。 ERP:企业资源计划 ERP的全称是Enterprise Resource Planning,即企业资源计划系统。 它…...

驱动-定时-秒-字符设备

文章目录 目的相关资料参考实验驱动程序-timer_dev.c编译文件-Makefile测试程序-timer.c分析 加载驱动-运行测试程序总结 目的 通过定时器timer_list、字符设备、规避竞争关系-原子操作,综合运用 实现一个程序,加深之前知识的理解。 实现字符设备驱动框…...

(面试)Handler消息处理机制原理

Handler是用于实现线程间通信和任务调度的一种机(Handler、 Looper、MessageQueue、 Message)。Handler 允许线程间发送Message或Runnable对象进行通信。在Android中UI修改只能通过UI Thread,子线程不能更新UI。如果子线程想更新UI&#xff0…...

WebRTC 通话原理:从协商到通信

在实时音视频通信领域,WebRTC(Web Real-Time Communication)凭借其开源、无需插件且能在浏览器中直接实现高质量通信的特性,成为开发者的热门选择。本文将深入解析 WebRTC 通话原理,涵盖媒体协商、网络协商、网络穿越&…...

InforSuite AS 可以发布django和vue项目是否可行

InforSuite AS 是浪潮推出的企业级中间件平台,主要用于应用集成、流程管理、数据交换等场景,其核心功能更偏向于 Java EE 应用的部署和管理(如支持 WAR/EAR 包)。关于能否直接发布 Django(Python 框架)和 V…...

【中级软件设计师】网络攻击(附软考真题)

【中级软件设计师】网络攻击(附软考真题) 目录 【中级软件设计师】网络攻击(附软考真题)一、历年真题二、考点:网络攻击1、拒绝服务攻击(DoS攻击)2、重放攻击3、特洛伊木马4、网络监听5、SQL注入…...

CSS图片垂直居中问题解决方案

在 CSS 中,使用 vertical-align: middle 导致图片略微向下偏移的现象,本质上是由于 行内元素的基线对齐规则 和 父容器上下文环境 共同作用的结果。以下是具体原因和解决方案: 原因详解 1. vertical-align: middle 的真实含义 该属性 不会让…...

P1601 A+B Problem(高精)

题目描述 高精度加法,相当于 ab problem,不用考虑负数。 输入格式 分两行输入。a,b≤10500。 输出格式 输出只有一行,代表 ab 的值。 输入输出样例 输入 1 1 输出 2 输入 1001 9099 输出 10100 说明/提示 20% 的测试数据…...

鸿蒙OSUniApp实现个性化的搜索框与搜索历史记录#三方框架 #Uniapp

使用UniApp实现个性化的搜索框与搜索历史记录 在移动端应用开发中,搜索功能几乎是标配,而一个好的搜索体验不仅仅是功能的实现,更是用户留存的关键。本文将分享如何在UniApp框架下打造一个既美观又实用的搜索框,并实现搜索历史记录…...

鸿蒙OSUniApp 制作自定义弹窗与模态框组件#三方框架 #Uniapp

UniApp 制作自定义弹窗与模态框组件 前言 在移动应用开发中,弹窗和模态框是用户交互的重要组成部分,它们用于显示提示信息、收集用户输入或确认用户操作。尽管 UniApp 提供了基础的交互组件如 uni.showModal() 和 uni.showToast(),但这些原…...

web第一次课后作业--运行一个java web项目

一、创建java web项目 1.新建java EE --> 模版&#xff1a;Web应用程序 2.选择版本&#xff1a;Java EE 8 3. 配置tomcat 二、页面效果 默认页面 跳转页面 三、代码 3.1 默认页面 <% page contentType"text/html; charsetUTF-8" pageEncoding"UTF-8…...

工业互联网

工业互联网全景解析 工业互联网是工业数字化、网络化、智能化转型升级的重要抓手&#xff0c;是实现中国制造 2025 战略目标的重要路径&#xff0c;对于推动我国实体经济高质量、可持续发展&#xff0c;建设制造强国、网络强国&#xff0c;意义重大。2017 年&#xff0c;我国提…...

论QT6多线程技术

前言 以前我多线程使用传统的继承qthread重写run()或者继承qrunable类把对象丢到线程池解决。经过昨天的面试让我了解到新的技术&#xff0c;我之前看到过只不过没有详细的去了解movetotread技术&#xff0c;这个技术是qt5推出的&#xff0c;qt6还在延续使用 代码结构 以下是…...

TensorFlow深度学习实战(16)——注意力机制详解

TensorFlow深度学习实战&#xff08;16&#xff09;——注意力机制详解 0. 前言1. 引入注意力机制2. 注意力机制2.1 注意力机制原理2.2 注意力机制分类 3. 添加注意机制的 Seq2Seq 模型3.1 数据处理3.2 模型构建与训练3.3 模型性能评估 小结系列链接 0. 前言 在传统的神经网络…...

架空防静电地板材质全解析:选对材质,守护精密空间的“安全卫士”

在现代科技驱动的社会中&#xff0c;无论是数据中心、实验室、手术室&#xff0c;还是高端电子厂房&#xff0c;静电都是精密设备的“隐形杀手”。而架空防静电地板作为这些场所的“安全卫士”&#xff0c;其材质选择直接决定了防静电性能、承重能力及使用寿命。今天&#xff0…...

Linux系统中部署java服务(docker)

1、不使用docker ✅ 1. 检查并安装 Java 环境 检查 Java 是否已安装&#xff1a; java -version✅ 2. 上传 Java 项目 JAR 文件 可以创建一个server文件夹&#xff0c;然后上传目录 查看当前目录 然后创建目录上传jar包 ✅ 3. 启动 Java 服务 java -jar hywl-server.jar…...

PyGame游戏开发(入门知识+组件拆分+历史存档/回放+人机策略)

前言&#xff1a; 本章实现游戏组件的复用解耦&#xff0c;以及使用配置文件替代原有硬编码形式&#xff0c;进而只需要改动配置文件即可实现整个游戏的难度和地图变化&#xff0c;同时增加历史记录功能&#xff0c;在配置文件开启后即可保存每一局的记录为json形式作为后续强化…...

【上位机——WPF】Window标签常用属性

常用属性 常用属性程序退出 常用属性都是写在Window标签中的 <Window x:Class"WpfDemo1.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"…...

K8S Gateway AB测试、蓝绿发布、金丝雀(灰度)发布

假设有如下三个节点的 K8S 集群&#xff1a; ​ k8s31master 是控制节点 k8s31node1、k8s31node2 是工作节点 容器运行时是 containerd 一、场景分析 阅读本文&#xff0c;默认您已经安装了 K8S Gateway。 关于 AB 测试、金丝雀发布&#xff0c;可以看这篇文章。 二、实验准…...

人大金仓数据库 与django结合

要在Django项目中连接人大金仓数据库&#xff08;Kingbase&#xff09;&#xff0c;你需要使用一个适合的数据库适配器。人大金仓数据库是基于PostgreSQL的&#xff0c;因此你可以使用psycopg2库来与Django连接。但是&#xff0c;由于人大金仓数据库有其特定的功能和配置&#…...

RK3588 桌面系统配置WiFi和蓝牙配置

桌面右上角点击&#xff0c;打开选项&#xff0c;找到WiFi的选择网络或者WiFi设置 在弹出的窗口中选择需要连接的WiFi&#xff0c;然后右下角选择连接&#xff0c;然后输入WiFi密码即可连接。 25.4. 命令行连接wifi路由器 命令行配置wifi的方法有很多&#xff0c;下面介绍几种…...

TLV格式

‌TLV格式&#xff08;Tag-Length-Value&#xff09;是一种常用的数据序列化格式&#xff0c;主要用于数据包或消息的有效载荷编码。‌TLV格式将数据划分为三个主要部分&#xff1a;Tag&#xff08;标签&#xff09;、Length&#xff08;长度&#xff09;和Value&#xff08;值…...

2024年9月电子学会等级考试五级第三题——整数分解

题目 3、整数分解 正整数 N 的 K-P 分解是指将 N 写成 K 个正整数的 P 次方的和。本题就请你对任意给定的正整数 N、K、P&#xff0c;写出 N 的 K-P 分解。 时间限制&#xff1a;8000 内存限制&#xff1a;262144 输入 输入在一行给出 3 个正整数 N (≤ 400)、K (≤ N)、P (1 …...