当前位置: 首页 > news >正文

大模型项目:普通蓝牙音响接入DeepSeek,解锁语音交互新玩法

本文附带视频讲解

【代码宇宙019】技术方案:蓝牙音响接入DeepSeek,解锁语音交互新玩法_哔哩哔哩_bilibili


目录

效果演示

核心逻辑

技术实现

大模型对话(技术: LangChain4j 接入 DeepSeek)

语音识别(技术:阿里云-实时语音识别)

语音生成(技术:阿里云-语音生成)

效果演示

核心逻辑

技术实现

大模型对话(技术: LangChain4j 接入 DeepSeek)

常用依赖都在这里(不是最简),DeepSeek 目前没有单独的依赖,用 open-ai 协议的依赖可以兼容,官网这里有说明:OpenAI Official SDK | LangChain4j

<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-open-ai</artifactId><version>1.0.0-beta3</version>
</dependency>
<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j</artifactId><version>1.0.0-beta3</version>
</dependency>
<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-spring-boot-starter</artifactId><version>1.0.0-beta3</version>
</dependency>

请求 ds 的核心类

package ai.voice.assistant.client;/*** @Author:超周到的程序员* @Date:2025/4/25*/import ai.voice.assistant.config.DaemonProcess;
import ai.voice.assistant.service.llm.BaseChatClient;
import dev.langchain4j.data.message.ChatMessage;
import dev.langchain4j.data.message.SystemMessage;
import dev.langchain4j.data.message.UserMessage;
import dev.langchain4j.model.chat.response.ChatResponse;
import dev.langchain4j.model.chat.response.StreamingChatResponseHandler;
import dev.langchain4j.model.openai.OpenAiStreamingChatModel;import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;import com.alibaba.fastjson.JSON;@Component("deepSeekStreamClient")
public class DeepSeekStreamClient implements BaseChatClient {private static final Logger LOGGER = LogManager.getLogger(DeepSeekStreamClient.class);@Value("${certificate.llm.deepseek.key}")private String key;@Overridepublic String chat(String question) {if (question.isBlank()) {return "";}OpenAiStreamingChatModel model = OpenAiStreamingChatModel.builder().baseUrl("https://api.deepseek.com").apiKey(key).modelName("deepseek-chat").build();List<ChatMessage> messages = new ArrayList<>();messages.add(SystemMessage.from(prompt));messages.add(UserMessage.from(question));CountDownLatch countDownLatch = new CountDownLatch(1);StringBuilder answerBuilder = new StringBuilder();model.chat(messages, new StreamingChatResponseHandler() {@Overridepublic void onPartialResponse(String answerSplice) {// 语音生成(流式)//                voiceGenerateStreamService.process(new String[] {answerSplice});
//                System.out.println("== answerSplice: " + answerSplice);answerBuilder.append(answerSplice);}@Overridepublic void onCompleteResponse(ChatResponse chatResponse) {countDownLatch.countDown();}@Overridepublic void onError(Throwable throwable) {LOGGER.error("chat ds error, messages:{} err:", JSON.toJSON(messages), throwable);}});try {countDownLatch.await();} catch (InterruptedException e) {throw new RuntimeException(e);}String answer = answerBuilder.toString();LOGGER.info("chat ds end, answer:{}", answer);return answer;}
}

语音识别(技术:阿里云-实时语音识别)

开发参考_智能语音交互(ISI)-阿里云帮助中心

开发日志记录——

这里在我的场景下遇到了会话断连的问题:

  • 问题场景:阿里的实时语音识别,第一次对话后 10s 如果不说话那么会断开连接(阿里侧避免过多无用连接占用),本次做的蓝牙音响诉求是让他一直保活不断开,有需要就和它对话并且不想要唤醒词
  • 解决方式:因此这里用了 catch 断连异常后再次执行监听方法的方式来兼容这个问题,其实也可以定时发送一个空包过去,但是那样不确定会不会额外增加费用,另外也要处理同时发送空包和人进行语音对话的问题,最终生成的音频文件播放哪个的顺序问题

<dependency><groupId>com.alibaba.nls</groupId><artifactId>nls-sdk-tts</artifactId><version>${ali-vioce-sdk.version}</version>
</dependency>
<dependency><groupId>com.alibaba.nls</groupId><artifactId>nls-sdk-transcriber</artifactId><version>${ali-vioce-sdk.version}</version>
</dependency>

package ai.voice.assistant.service.voice;import ai.voice.assistant.config.VoiceConfig;
import ai.voice.assistant.service.llm.BaseChatClient;
import ai.voice.assistant.util.WavPlayerUtil;
import com.alibaba.nls.client.protocol.Constant;
import com.alibaba.nls.client.protocol.InputFormatEnum;
import com.alibaba.nls.client.protocol.NlsClient;
import com.alibaba.nls.client.protocol.SampleRateEnum;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriber;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriberListener;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriberResponse;
import jakarta.annotation.PreDestroy;import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Service;import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.TargetDataLine;/*** @Author:超周到的程序员* @Date:2025/4/23 此示例演示了从麦克风采集语音并实时识别的过程* (仅作演示,需用户根据实际情况实现)*/
@Service
public class VoiceRecognitionService {private static final Logger LOGGER = LoggerFactory.getLogger(VoiceRecognitionService.class);@Autowiredprivate NlsClient client;@Autowiredprivate VoiceConfig voiceConfig;@Autowiredprivate VoiceGenerateService voiceGenerateService;@Autowired
//    @Qualifier("deepSeekStreamClient")@Qualifier("deepSeekMemoryClient")private BaseChatClient chatClient;public SpeechTranscriberListener getTranscriberListener() {SpeechTranscriberListener listener = new SpeechTranscriberListener() {//识别出中间结果.服务端识别出一个字或词时会返回此消息.仅当setEnableIntermediateResult(true)时,才会有此类消息返回@Overridepublic void onTranscriptionResultChange(SpeechTranscriberResponse response) {// 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查LOGGER.info("name: {}, status: {}, index: {}, result: {}, time: {}",response.getName(),response.getStatus(),response.getTransSentenceIndex(),response.getTransSentenceText(),response.getTransSentenceTime());}@Overridepublic void onTranscriberStart(SpeechTranscriberResponse response) {LOGGER.info("task_id: {}, name: {}, status: {}",response.getTaskId(),response.getName(),response.getStatus());}@Overridepublic void onSentenceBegin(SpeechTranscriberResponse response) {LOGGER.info("task_id: {}, name: {}, status: {}",response.getTaskId(),response.getName(),response.getStatus());}//识别出一句话.服务端会智能断句,当识别到一句话结束时会返回此消息@Overridepublic void onSentenceEnd(SpeechTranscriberResponse response) {LOGGER.info("name: {}, status: {}, index: {}, result: {}, confidence: {}, begin_time: {}, time: {}",response.getName(),response.getStatus(),response.getTransSentenceIndex(),response.getTransSentenceText(),response.getConfidence(),response.getSentenceBeginTime(),response.getTransSentenceTime());if (response.getName().equals(Constant.VALUE_NAME_ASR_SENTENCE_END)) {if (response.getStatus() == 20000000) {// 识别完一句话,调用大模型String answer = chatClient.chat(response.getTransSentenceText());voiceGenerateService.process(answer);WavPlayerUtil.playWavFile("/Users/zhoulongchao/Desktop/file_code/project/p_me/ai-voice-assistant/tts_test.wav");}}}//识别完毕@Overridepublic void onTranscriptionComplete(SpeechTranscriberResponse response) {LOGGER.info("task_id: {}, name: {}, status: {}",response.getTaskId(),response.getName(),response.getStatus());}@Overridepublic void onFail(SpeechTranscriberResponse response) {// 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查LOGGER.info("语音识别 task_id: {}, status: {}, status_text: {}",response.getTaskId(),response.getStatus(),response.getStatusText());}};return listener;}public void process() {SpeechTranscriber transcriber = null;try {// 创建实例,建立连接transcriber = new SpeechTranscriber(client, getTranscriberListener());transcriber.setAppKey(voiceConfig.getAppKey());// 输入音频编码方式transcriber.setFormat(InputFormatEnum.PCM);// 输入音频采样率transcriber.setSampleRate(SampleRateEnum.SAMPLE_RATE_16K);// 是否返回中间识别结果transcriber.setEnableIntermediateResult(true);// 是否生成并返回标点符号transcriber.setEnablePunctuation(true);// 是否将返回结果规整化,比如将一百返回为100transcriber.setEnableITN(false);//此方法将以上参数设置序列化为json发送给服务端,并等待服务端确认transcriber.start();AudioFormat audioFormat = new AudioFormat(16000.0F, 16, 1, true, false);DataLine.Info info = new DataLine.Info(TargetDataLine.class, audioFormat);TargetDataLine targetDataLine = (TargetDataLine) AudioSystem.getLine(info);targetDataLine.open(audioFormat);targetDataLine.start();System.out.println("You can speak now!");int nByte = 0;final int bufSize = 3200;byte[] buffer = new byte[bufSize];while ((nByte = targetDataLine.read(buffer, 0, bufSize)) > 0) {// 直接发送麦克风数据流transcriber.send(buffer, nByte);}transcriber.stop();} catch (Exception e) {LOGGER.info("语音识别 error: {}", e.getMessage());// 临时兼容,用于保持连接在逻辑上不断开,否则默认10s不说话会自动断连process();} finally {if (null != transcriber) {transcriber.close();}}}@PreDestroypublic void shutdown() {client.shutdown();}
}

语音生成(技术:阿里云-语音生成)

开发参考_智能语音交互(ISI)-阿里云帮助中心

开发日志记录——

  • 非线程安全:在调用完阿里的语音生成能力后,得到了音频文件,和播放打通的方法是建立一个临时文件,生成和播放都路由到这个文件,因为这个项目只是个人方便分阶段单元测试用可以这么写,如果有多个客户端,那么这种方式就不是线程安全的
  • 回答延迟:这里我是使用的普通版的语音合成能力,初次接入支持免费体验 3 个月,其实可以使用流式语音合成能力,是另一个 sdk,具体可见文档:流式文本语音合成使用说明_智能语音交互(ISI)-阿里云帮助中心 因为目前流式语音合成能力需要付费,因此没有接入流式,因此每次需要收集完 ds 大模型的回答流之后才可以进行语音生成,会有 8s 延迟

官网有 100 多种音色可以选:

<dependency><groupId>com.alibaba.nls</groupId><artifactId>nls-sdk-tts</artifactId><version>${ali-vioce-sdk.version}</version>
</dependency>
<dependency><groupId>com.alibaba.nls</groupId><artifactId>nls-sdk-transcriber</artifactId><version>${ali-vioce-sdk.version}</version>
</dependency>

package ai.voice.assistant.service.voice;import ai.voice.assistant.config.VoiceConfig;
import com.alibaba.nls.client.protocol.NlsClient;
import com.alibaba.nls.client.protocol.OutputFormatEnum;
import com.alibaba.nls.client.protocol.SampleRateEnum;
import com.alibaba.nls.client.protocol.tts.;
import com.alibaba.nls.client.protocol.tts.SpeechSynthesizerListener;
import com.alibaba.nls.client.protocol.tts.SpeechSynthesizerResponse;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.concurrent.ScheduledExecutorService;/*** @Author:超周到的程序员* @Date:2025/4/23* 语音合成API调用* 流式合成TTS* 首包延迟计算*/
@Service
public class VoiceGenerateService {private static final Logger LOGGER = LoggerFactory.getLogger(VoiceGenerateService.class);private static long startTime;@Autowiredprivate VoiceConfig voiceConfig;@Autowiredprivate NlsClient client;private static SpeechSynthesizerListener getSynthesizerListener() {SpeechSynthesizerListener listener = null;try {listener = new SpeechSynthesizerListener() {File f = new File("tts_test.wav");FileOutputStream fout = new FileOutputStream(f);private boolean firstRecvBinary = true;//语音合成结束@Overridepublic void onComplete(SpeechSynthesizerResponse response) {// TODO 当onComplete时表示所有TTS数据已经接收完成,因此这个是整个合成延迟,该延迟可能较大,未必满足实时场景LOGGER.info("name:{} status:{} outputFile:{}", response.getStatus(), f.getAbsolutePath(), response.getName());}//语音合成的语音二进制数据@Overridepublic void onMessage(ByteBuffer message) {try {if (firstRecvBinary) {// TODO 此处是计算首包语音流的延迟,收到第一包语音流时,即可以进行语音播放,以提升响应速度(特别是实时交互场景下)firstRecvBinary = false;long now = System.currentTimeMillis();LOGGER.info("tts first latency : " + (now - VoiceGenerateService.startTime) + " ms");}byte[] bytesArray = new byte[message.remaining()];message.get(bytesArray, 0, bytesArray.length);fout.write(bytesArray);} catch (IOException e) {e.printStackTrace();}}@Overridepublic void onFail(SpeechSynthesizerResponse response) {// TODO 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查LOGGER.info("语音合成 task_id: {}, status: {}, status_text: {}",response.getTaskId(),response.getStatus(),response.getStatusText());}@Overridepublic void onMetaInfo(SpeechSynthesizerResponse response) {
//                    System.out.println("MetaInfo event:{}" + response.getTaskId());}};} catch (Exception e) {e.printStackTrace();}return listener;}public void process(String text) {SpeechSynthesizer synthesizer = null;try {//创建实例,建立连接synthesizer = new SpeechSynthesizer(client, getSynthesizerListener());synthesizer.setAppKey(voiceConfig.getAppKey());//设置返回音频的编码格式synthesizer.setFormat(OutputFormatEnum.WAV);//设置返回音频的采样率synthesizer.setSampleRate(SampleRateEnum.SAMPLE_RATE_16K);//发音人synthesizer.setVoice("jielidou");//语调,范围是-500~500,可选,默认是0synthesizer.setPitchRate(50);//语速,范围是-500~500,默认是0synthesizer.setSpeechRate(30);//设置用于语音合成的文本synthesizer.setText(text);synthesizer.addCustomedParam("enable_subtitle", true);//此方法将以上参数设置序列化为json发送给服务端,并等待服务端确认long start = System.currentTimeMillis();synthesizer.start();LOGGER.info("tts start latency " + (System.currentTimeMillis() - start) + " ms");VoiceGenerateService.startTime = System.currentTimeMillis();//等待语音合成结束synthesizer.waitForComplete();LOGGER.info("tts stop latency " + (System.currentTimeMillis() - start) + " ms");} catch (Exception e) {e.printStackTrace();} finally {//关闭连接if (null != synthesizer) {synthesizer.close();}}}public void shutdown() {client.shutdown();}
}

相关文章:

大模型项目:普通蓝牙音响接入DeepSeek,解锁语音交互新玩法

本文附带视频讲解 【代码宇宙019】技术方案&#xff1a;蓝牙音响接入DeepSeek&#xff0c;解锁语音交互新玩法_哔哩哔哩_bilibili 目录 效果演示 核心逻辑 技术实现 大模型对话&#xff08;技术&#xff1a; LangChain4j 接入 DeepSeek&#xff09; 语音识别&#xff08;…...

split和join的区别‌

split和join是Python中用于处理字符串的两种方法&#xff0c;它们的主要区别在于功能和使用场景。‌ split()方法 ‌split()方法用于将字符串按照指定的分隔符分割成多个子串&#xff0c;并返回这些子串组成的列表‌。如果不指定分隔符&#xff0c;则默认分割所有的空白字符&am…...

Qt坐标系 + 信号和槽 + connect函数(8)

文章目录 Qt坐标系信号和槽connect函数connect函数的介绍connect函数具体的使用方式一个简单的例子 两个问题咋知道的QPushButton有一个clicked信号官方文档找不到相关线索怎么办 简介&#xff1a;上篇文章&#xff1a;Qt 通过控件按钮实现hello world 命名规范&#xff08;7&…...

Maven 公司内部私服中央仓库搭建 局域网仓库 资源共享 依赖包构建共享

介绍 公司内部私服搭建通常是为了更好地管理公司内部的依赖包和构建过程&#xff0c;避免直接使用外部 Maven 中央仓库。通过搭建私服&#xff0c;团队能够控制依赖的版本、提高构建速度并增强安全性。公司开发的一些公共工具库更换的提供给内部使用。 私服是一种特殊的远程仓…...

蓝桥杯14届国赛 合并数列

问题描述 小明发现有很多方案可以把一个很大的正整数拆成若干正整数的和。他采取了其中两种方案&#xff0c;分别将他们列为两个数组 {a1,a2,...,an} 和 {b1,b2,...,bm}。两个数组的和相同。 定义一次合并操作可以将某数组内相邻的两个数合并为一个新数&#xff0c;新数的值是…...

人工智能100问☞第20问:神经网络的基本原理是什么?

目录 一、通俗解释 二、专业解析 三、权威参考 神经网络通过模拟人脑神经元连接结构,借助多层神经元的前向传播(输入到输出逐层计算)与反向传播(误差逆向调整参数)机制,利用激活函数(如ReLU、Sigmoid)引入非线性特征,通过权重迭代优化实现从数据中自主学习,最终完…...

AMD FPGA书籍推荐-初学者、一线工程师适用

!](https://i-blog.csdnimg.cn/direct/b78c8f0d015240e28aaad985f0f6eca9.jpg...

CSS 盒子模型与元素定位

CSS 盒子模型与元素定位 一、元素类型与转换 1. 基本元素类型 块级元素 (block) 特点&#xff1a;独占一行&#xff0c;可设置宽高&#xff0c;默认宽度100%示例&#xff1a;<div>, <p>, <h1>-<h6>, <ul>, <li> 行内元素 (inline) 特…...

Java常用类-比较器

目录 一、为什么需要比较器&#xff1f;二、核心差异速记表三、Comparable&#xff1a;对象自带的 “默认规则”1. 核心作用2. 源码定义3. 实战&#xff1a;给Student类加默认规则4. 源码验证&#xff08;以Integer为例&#xff09; 四、Comparator&#xff1a;临时的 “外部规…...

【Linux系列】bash_profile 与 zshrc 的编辑与加载

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

【大模型】解决最新的Dify1.3.1版本 无法基于Ollama成功添加模型

本地搭建参考链接&#xff0c;但是版本不是最新的1.3.1 DeepSeek Dify &#xff1a;零成本搭建企业级本地私有化知识库保姆级教程 windows环境下部署。 查看模型添加&#xff0c;提示成功&#xff0c;但实际模型接口返回值为空&#xff0c;即看不到已添加的模型。 解决方法…...

6.空气质量检测和语音播报

目录 传感器 传感器分类 数字量传感器 模拟量传感器 电压型模拟量传感器 电流型模拟量传感器 接收不同数字电平信号 KQM6600 简介 获取数据手册 关注手册的内容 KQM660硬件层 ​编辑 KQM协议层 语音识别和语音播报模块 SU03T作用 SU03T简介​编辑 SU03T硬件层 …...

LeetCode 热题 100 543. 二叉树的直径

LeetCode 热题 100 | 543. 二叉树的直径 大家好&#xff0c;今天我们来解决一道经典的二叉树问题——二叉树的直径。这道题在 LeetCode 上被标记为简单难度&#xff0c;要求计算给定二叉树的直径。 问题描述 给你一棵二叉树的根节点&#xff0c;返回该树的直径。二叉树的直径…...

D. Explorer Space(dfs+剪枝)

Problem - 1517D - Codeforces 题目大意&#xff1a;给你一个n行m列的矩阵&#xff0c;以及每个点上下左右相邻点的边权&#xff0c;求出每个点任意走k步后再回到当前这个点的最小路程&#xff0c;如果不能回到起始点则输出-1 思路&#xff1a;既然走k步后要回到起始点&#…...

# KVstorageBaseRaft-cpp 项目 RPC 模块源码学习

KVstorageBaseRaft-cpp 项目 RPC 模块源码学习 。 一、项目简介 KVstorageBaseRaft-cpp 是一个基于 Raft 一致性算法实现的分布式 KV 存储系统&#xff0c;采用 C 开发。项目的核心目标是帮助开发者理解 Raft 原理和分布式 KV 存储的基本实现。RPC 模块是分布式系统通信的关…...

QT6 源(93)篇三:阅读与注释共用体类 QVariant 及其源代码,本类支持比较运算符 ==、!=。

&#xff08;9&#xff09; 本类支持比较运算符 、! &#xff1a; 可见&#xff0c; QString 类型里可存储多个 unicode 字符&#xff0c;即使只存储一个 unicode 字符也不等于 QChar。 &#xff08;10&#xff09;本源代码来自于头文件 qvariant . h &#xff1a; #ifndef Q…...

Qt开发经验 --- 避坑指南(13)

文章目录 [toc]1 安装Qt creator后无法使用debug调试2 安装VS后之间安装自带的Windows SDK3 Qt配置ssl4 ubuntu编译linuxdeployqt 更多精彩内容&#x1f449;内容导航 &#x1f448;&#x1f449;Qt开发经验 &#x1f448; 1 安装Qt creator后无法使用debug调试 安装最新版本Q…...

go 通过汇编学习atomic原子操作原理

文章目录 概要一、原理1.1、案例1.2、关键汇编 二、LOCK汇编指令2.1、 LOCK2.2、 原理2.2.1、 缓存行2.2.2、 缓存一致性之MESI协议2.2.3、lock原理 三、x86缓存发展四、x86 DMA发展参考 概要 在并发操作下&#xff0c;对一个简单的aa2的操作都会出错&#xff0c;这是因为这样…...

LOJ 6346 线段树:关于时间 Solution

Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1​,a2​,⋯,an​)&#xff0c;另有一个存储三元组的列表 L L L. 有 m m m 个操作分两种&#xff1a; add ⁡ ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k)&#xff1a;将 ( l , r , …...

Python----神经网络(基于Alex Net的花卉分类项目)

一、基于Alex Net的花卉分类 1.1、项目背景 在当今快速发展的科技领域&#xff0c;计算机视觉已成为一个备受关注的研究方向。随着深度学习技术的不断进步&#xff0c;图像识别技术得到了显著提升&#xff0c;广泛应用于医疗、安防、自动驾驶等多个领域。其中&#xff0c;花卉…...

影刀RPA开发-魔法指令-玩转图片识别

聊聊天&#xff0c;就能生成指令&#xff01; 1. 影刀RPA提取图片内容的方式 官方AI识别 集成的第三方识别指令 免费的识别指令 使用python自己编写识别代码&#xff0c;自己安装第三方库 import easyocr# 创建一个 EasyOCR 识别器&#xff0c;指定同时识别中文&#xff08;简…...

从零开始开发纯血鸿蒙应用之XML解析

从零开始开发纯血鸿蒙应用 〇、前言一、鸿蒙SDK中的 XML API1、ohos.xml2、ohos.convertxml 三、XML 解析实践1、源数据结构2、定义映射关系3、定义接收对象4、获取文章信息 四、总结 〇、前言 在前后端的数据传输方面&#xff0c;论格式化形式&#xff0c;JSON格式自然是首选…...

运算放大器稳定性分析

我们常见的运放电路大多是在闭环状态。那么就必然遵循闭环控制系统的基本原理。闭环控制系统的核心是通过反馈来调节系统的输出&#xff0c;使其更接近期望值。 本文从闭环控制系统的角度&#xff0c;画出同相、反相差分电路的经典控制框图。有了控制框图就可以利用经典控制理论…...

python【扩展库】websockets

文章目录 介绍基础教程安装websockets接收与发送消息介绍 websockets基于python构建websocket服务、客户端的扩展库;官方文档;优点是正确性(严格测试,100%分支覆盖)、简单性(自管理连接)、健壮性、高性能(C扩展加速内存操作),双向通信;基于(python标准异步io框架)…...

leetcode 454. 4Sum II

题目描述 代码&#xff1a; class Solution { public:int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {unordered_map<int,int> table;int temp 0;for(auto n1:nums1){fo…...

MCP 传输层代码分析

MCP 传输层代码分析 MCP 整体架构说明 引用官方文档原文&#xff1a;Model Context Protocol (MCP) 构建在一个灵活且可扩展的架构上&#xff0c;使 LLM 应用和集成之间的无缝通信成为可能。具体架构细节可以参考文档&#xff08;核心架构 - MCP 中文文档&#xff09;。MCP 采…...

OBS studio 减少音频中的杂音(噪音)

1. 在混音器中关闭除 麦克风 之外的所有的音频输入设备 2.在滤镜中增加“噪声抑制”和“噪声门限”...

java的Stream流处理

Java Stream 流处理详解 Stream 是 Java 8 引入的一个强大的数据处理抽象&#xff0c;它允许你以声明式方式处理数据集合&#xff08;类似于 SQL 语句&#xff09;&#xff0c;支持并行操作&#xff0c;提高了代码的可读性和处理效率。 一、Stream 的核心概念 1. 什么是 Str…...

Windows使用虚拟环境执行sh脚本

在代码文件夹git bash here echo ‘export PATH“/f/anaconda/Scripts:$PATH”’ >> ~/.bashrc echo ‘source /f/anaconda/etc/profile.d/conda.sh’ >> ~/.bashrc source ~/.bashrc conda路径确认 where conda conda activate mmt bash ./online.sh感谢gpt记录…...

Transformer Decoder-Only 算力FLOPs估计

FLOPs和FLOPS的区别 FLOPs &#xff08;Floating Point Operations&#xff09;是指模型或算法执行过程中总的浮点运算次数&#xff0c;单位是“次”FLOPS &#xff08;Floating Point Operations Per Second&#xff09;是指硬件设备&#xff08;如 GPU 或 CPU&#xff09;每…...

数字电子技术基础(五十七)——边沿触发器

目录 1 边沿触发器 1.1 边沿触发器简介 1.1.1 边沿触发器的电路结构 1.3 边沿触发的D触发器和JK触发器 1.3.1 边沿触发的D型触发器 1.3.2 边沿触发的JK触发器 1 边沿触发器 1.1 边沿触发器简介 对于时钟触发的触发器来说&#xff0c;始终都存在空翻的现象&#xff0c;抗…...

05.three官方示例+编辑器+AI快速学习three.js webgl - animation - skinning - ik

本实例主要讲解内容 这个Three.js示例展示了**反向运动学(Inverse Kinematics, IK)**在3D角色动画中的应用。通过加载一个角色模型&#xff0c;演示了如何使用IK技术实现自然的肢体运动控制&#xff0c;如手部抓取物体的动作。 核心技术包括&#xff1a; CCD反向运动学求解器…...

MYSQL数据库集群高可用和数据监控平台

项目环境 项目拓扑结构 软硬件环境清单 软硬件环境清单 软硬件环境清单 主机名IP硬件软件 master1 192.168.12.130 VIP&#xff1a;192.168.12.200 cpu:1颗2核 内 存&#xff1a;2GB HDD&#xff1a;20GB 网 络&#xff1a;NAT VmWare17 OpenEuler22.03 SP4 MySql8.0.3…...

《异常链机制详解:如何优雅地传递Java中的错误信息?》

大家好呀&#xff01;&#x1f44b; 作为一名Java开发者&#xff0c;相信你一定见过各种奇奇怪怪的异常报错。但有没有遇到过这样的情况&#xff1a;明明只调用了一个方法&#xff0c;却看到异常信息像俄罗斯套娃一样一层层展开&#xff1f;&#x1f914; 这就是我们今天要讲的…...

MySQL 数据库集群部署、性能优化及高可用架构设计

MySQL 数据库集群部署、性能优化及高可用架构设计 集群部署方案 1. 主从复制架构 传统主从复制&#xff1a;配置一个主库(Master)和多个从库(Slave)GTID复制&#xff1a;基于全局事务标识符的复制&#xff0c;简化故障转移半同步复制&#xff1a;确保至少一个从库接收到数据…...

什么是深度神经网络

深度神经网络(DNN)详细介绍 1. 定义与核心原理 深度神经网络(Deep Neural Network, DNN)是一种具有多个隐藏层的人工神经网络模型,其核心在于通过层次化的非线性变换逐步提取输入数据的高层次抽象特征。与浅层神经网络相比,DNN的隐藏层数量通常超过三层,例如VGGNet、R…...

深入解析PyTorch中MultiheadAttention的隐藏参数add_bias_kv与add_zero_attn

关键背景 最近在学习pytorch中的源码尤其是nn.modules下算子的实现&#xff0c;针对activation.py下MultiheadAttention下有两个不常见的参数的使用比较有趣&#xff0c;因为时序领域很少使用这两个参数&#xff08;add_bias_kv和add_zero_attn&#xff09;&#xff0c;但是其…...

最大化效率和性能:AKS 中节点池的强大功能

什么是节点池 在 Azure Kubernetes 服务 (AKS) 中&#xff0c;相同配置的节点会被分组到节点池中。这些节点池包含运行应用程序的底层虚拟机。创建 AKS 集群时&#xff0c;您需要定义初始节点数及其大小 (SKU)。随着应用程序需求的变化&#xff0c;您可能需要更改节点池的设置…...

用户态到内核态:Linux信号传递的九重门(一)

1. 信号的认识 1.1. 信号的特点 异步通知&#xff1a;信号是异步的&#xff0c;发送信号的进程无需等待接收进程的响应。预定义事件&#xff1a;每个信号对应一个预定义的事件&#xff08;如终止、中断、段错误等&#xff09;。 轻量级&#xff1a;信号不携带大量数据&#xf…...

c语言第一个小游戏:贪吃蛇小游戏01

hello啊大家好 今天我们用一个小游戏来增强我们的c语言&#xff01; 那就是贪吃蛇 为什么要做一个贪吃蛇小游戏呢&#xff1f; 因为这个小游戏所涉及到的知识有c语言的指针、数组、链表、函数等等可以让我们通过这个游戏来巩固c语言&#xff0c;进一步认识c语言。 一.我们先…...

JAVA EE_网络原理_网络层

晨雾散尽&#xff0c;花影清晰。 ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ----------陳長生. ❀主页&#xff1a;陳長生.-CSDN博客❀ &#x1f4d5;上一篇&#xff1a;数据库Mysql_联…...

前端性能指标及优化策略——从加载、渲染和交互阶段分别解读详解并以Webpack+Vue项目为例进行解读

按照加载阶段、渲染阶段和交互阶段三个维度进行系统性阐述&#xff1a; 在现代 Web 开发中&#xff0c;性能不再是锦上添花&#xff0c;而是决定用户体验与业务成败的关键因素。为了全面监控与优化网页性能&#xff0c;我们可以将性能指标划分为加载阶段、渲染阶段、和交互阶段…...

Flink 系列之十五 - 高级概念 - 窗口

之前做过数据平台&#xff0c;对于实时数据采集&#xff0c;使用了Flink。现在想想&#xff0c;在数据开发平台中&#xff0c;Flink的身影几乎无处不在&#xff0c;由于之前是边用边学&#xff0c;总体有点混乱&#xff0c;借此空隙&#xff0c;整理一下Flink的内容&#xff0c…...

控制台打印带格式内容

1. 场景 很多软件会在控制台打印带颜色和格式的文字&#xff0c;需要使用转义符实现这个功能。 2. 详细说明 2.1.转义符说明 样式开始&#xff1a;\033[参数1;参数2;参数3m 可以多个参数叠加&#xff0c;若同一类型的参数&#xff08;如字体颜色&#xff09;设置了多个&…...

Linux为啥会重新设置中断请求号与中断向量号之间的关系?

Linux内核重新设置中断请求号&#xff08;IRQ&#xff09;与中断向量号之间的关系&#xff0c;主要出于以下核心原因和设计考量&#xff1a; ​1. 硬件多样性与抽象需求​ ​硬件中断号&#xff08;HW Interrupt ID&#xff09;的差异​ 不同处理器架构的中断控制器&#xff08…...

自然语言处理NLP中的连续词袋(Continuous bag of words,CBOW)方法、优势、作用和程序举例

自然语言处理NLP中的连续词袋&#xff08;Continuous bag of words&#xff0c;CBOW&#xff09;方法、优势、作用和程序举例 目录 自然语言处理NLP中的连续词袋&#xff08;Continuous bag of words&#xff0c;CBOW&#xff09;方法、优势、作用和程序举例一、连续词袋( Cont…...

计算机网络笔记(二十二)——4.4网际控制报文协议ICMP

4.4.1ICMP报文的种类 ICMP&#xff08;Internet Control Message Protocol&#xff09;是IP协议的辅助协议&#xff0c;主要用于传递控制消息、错误报告和诊断信息。其报文分为两大类&#xff1a;查询报文和错误报告报文。 1. 错误报告报文&#xff08;Error Messages&#x…...

【AI论文】作为评判者的感知代理:评估大型语言模型中的高阶社会认知

摘要&#xff1a;评估大型语言模型&#xff08;LLM&#xff09;对人类的理解程度&#xff0c;而不仅仅是文本&#xff0c;仍然是一个开放的挑战。 为了弥合这一差距&#xff0c;我们引入了Sentient Agent作为评判者&#xff08;SAGE&#xff09;&#xff0c;这是一个自动评估框…...

Kubernetes生产实战(二十七):精准追踪Pod数据存储位置

在生产环境中&#xff0c;快速定位Pod数据的物理存储位置是运维人员的基本功。本文将揭秘Kubernetes存储系统的核心原理&#xff0c;并提供一套经过实战检验的定位方法体系。 一、存储架构全景图 K8S存储架构 Pod --> Volume Mount --> PVC --> PV --> Storage P…...

极新携手火山引擎,共探AI时代生态共建的破局点与增长引擎

在生成式AI与行业大模型的双重驱动下&#xff0c;人工智能正以前所未有的速度重构互联网产业生态。从内容创作、用户交互到商业决策&#xff0c;AI技术渗透至产品研发、运营的全链条&#xff0c;推动效率跃升与创新模式变革。然而&#xff0c;面对AI技术迭代的爆发期&#xff0…...