当前位置: 首页 > news >正文

K8S - GitLab CI 自动化构建镜像入门

一、引言

在现代持续交付(CI/CD)体系中,容器镜像的自动化构建与推送已成为交付链条的重要一环。

GitLab CI/CD 作为 GitLab 平台的原生集成功能,提供了声明式、可扩展的流水线机制,使得开发者可以在代码生命周期内实现标准化的镜像构建与管理。

二、原理解析

2.1 GitLab CI 核心架构

GitLab CI 是 GitLab 内置的持续集成系统,采用声明式配置实现自动化构建与交付。其核心架构由以下组件构成:

Pipeline(流水线)

持续集成的顶层抽象,代表一次完整的自动化流程。

由多个阶段(Stage)串联组成,每次代码提交、合并请求或手动触发都会启动新的 Pipeline。

Stage(阶段)

流水线的逻辑分段,如 build、test、deploy。

串行执行,前一阶段全部成功后才会进入下一阶段。任一阶段失败即终止整个流水线,确保质量门槛。

Job(作业)

Stage 内的最小执行单元,定义具体任务,如 docker build或 docker push。

同一阶段内多个 Job 可并行执行,相互隔离,提高效率。

Runner(执行器)

负责实际执行 Job 的代理服务。

支持 Shell、Docker、Kubernetes 等多种运行环境,可动态扩缩容,提升资源利用率。

配置文件(.gitlab-ci.yml)

位于仓库根目录,使用 YAML 语法。

定义 Pipeline 的结构、环境与行为,包括:默认执行镜像、环境变量与敏感凭证、辅助服务(如数据库容器)

通过上述组件,GitLab CI 构建了一个标准化、自动化的持续集成体系,为容器镜像构建与交付提供强大支撑。

2.2 GitLab CI Pipeline 执行流程

从触发到推送的完整路径
GitLab CI 镜像自动化构建流程

├── 1. 触发阶段  
│    ├── 主要触发:代码推送至受保护分支(如main)
│    └── 其他方式:合并请求、定时任务、手动触发
│
├── 2. 解析阶段  
│    └── 读取.gitlab-ci.yml,生成StageJob执行依赖图
│
├── 3. 调度阶段  
│    └── GitLab Server调度K8s/Docker Runner创建隔离环境
│
└── 4. 执行阶段  ├── Stage 1: Build  │    └── 拉取代码 → 复用缓存 → 构建镜像(Tag: $CI_COMMIT_SHA)  │  └── Stage 2: Push  └── 安全注入凭证 → 推送镜像至远程仓库远程仓库

流程解析

1.触发阶段

规则约束:仅当受保护分支(如 main)发生代码变更时,触发流水线构建,确保流程稳定可靠。

2.解析阶段

声明式配置:通过仓库根目录下的 .gitlab-ci.yml文件,定义 Stage 顺序与 Job 逻辑,GitLab 自动解析生成执行依赖图。

3.调度阶段

环境隔离:GitLab Server 调用 Kubernetes Runner 或 Docker Runner,动态创建隔离的执行环境,任务完成后自动释放资源。

4.执行阶段

Build 阶段

代码与缓存加载:拉取项目代码,复用历史构建缓存(如依赖库、中间层镜像)以加速构建过程。

镜像构建:使用提交哈希($CI_COMMIT_SHA)作为镜像标签(Tag),保证每个版本唯一可溯源。

Push 阶段

安全认证:通过预置的 CI/CD 变量注入镜像仓库凭证,避免泄露敏感信息。

镜像推送:推送镜像至远程仓库,作为后续部署或发布的标准制品

核心设计原则

环境隔离

通过 Kubernetes Pod 或 Docker 容器实现 Job 执行环境隔离,防止依赖冲突和资源竞争,提升流水线稳定性。

版本追溯

镜像标签绑定代码提交哈希,确保源代码与生成制品一一对应,便于快速定位问题和执行版本回滚。

安全性保障

通过 GitLab CI 变量注入敏感凭证,结合受保护变量(Protected Variables)机制,限制敏感数据仅对受信任分支或用户可用,降低信息泄露风险。

构建性能优化

应用多层次缓存策略,包括 Docker 镜像层缓存与依赖包缓存,显著减少重复构建时间,提高流水线整体执行效率。

三、GitLab CI Pipeline 实例

3.1 环境准备

1.GitLab 仓库配置

将本地项目关联到 GitLab 仓库,推送代码以触发后续流水线:

# 关联本地仓库与 GitLab 远程仓库
git remote set-url origin https://gitlab.com/yourname/your-repo.git
# 推送代码至 main 分支
git push -u origin main

2.Docker Hub 凭证配置

为保障镜像推送过程中的账户安全,需要配置 Docker Hub 访问凭证。

生成 Docker Hub Token

登录 Docker Hub → Account Settings → Security → New Access Token(生成访问令牌)。

配置 GitLab CI/CD 变量

在 GitLab 仓库的 Settings → CI/CD → Variables中添加以下变量:

DOCKERHUB_USERNAME:Docker Hub 用户名

DOCKERHUB_TOKEN:生成的访问令牌(请勾选 Protected 和 Masked,保护凭证安全)

3.2 项目结构

my-project/
├── frontend/
│   ├── Dockerfile          # 前端镜像构建文件
│   └── src/                # 前端源码
├── backend/
│   ├── Dockerfile          # 后端镜像构建文件
│   └── src/                # 后端源码
├── deploy/                 
│   ├── k8s/                # Kubernetes 部署配置(可选 Helm Charts)
│   └── docker-compose.yml  # 本地调试用 Compose 文件(可选)
└── .gitlab-ci.yml          # GitLab CI 流水线定义

3.3 完整示例

接下来,通过一个简单示例,演示 GitLab CI 流水线的完整构建与推送流程。

.gitlab-ci.yml 详解

# 全局配置:定义执行环境与共享服务  
image: docker:24.0          # 基础执行镜像  
services:  - docker:dind             # 启用Docker-in-Docker模式  # 定义流水线阶段(按顺序执行)  
stages:  - build  - push  # ---------- Stage 1: 构建镜像阶段 ----------  
build_frontend:  stage: build  script:  # 镜像构建- docker build -t $DOCKERHUB_USERNAME/frontend:$CI_COMMIT_SHA -f frontend/Dockerfile ./frontend  cache:  key: frontend-$CI_COMMIT_REF_SLUG  paths:  - frontend/node_modules/  # 缓存Node.js依赖  # ---------- Stage 2: 推送镜像阶段 ----------  
push_frontend:  stage: push  script:  # 安全登录并推送镜像  - echo "$DOCKERHUB_TOKEN" | docker login -u $DOCKERHUB_USERNAME --password-stdin  - docker push $DOCKERHUB_USERNAME/frontend:$CI_COMMIT_SHA  # 仅当main分支触发时执行  rules:  - if: $CI_COMMIT_BRANCH == "main"  

关键配置注释

services: docker:dind:启用 Docker 守护进程,支持容器内构建容器。

cache:基于分支名($CI_COMMIT_REF_SLUG)缓存依赖,加速后续构建。

rules:限制仅 main分支触发 Push 阶段,避免开发分支误推送。

3.4 触发与验证

# 提交空Commit触发流水线(测试用)  
git commit --allow-empty -m "Trigger GitLab CI Pipeline"  
git push origin main  

验证路径:

流水线状态:进入 GitLab 仓库 → CI/CD→ Pipelines,查看执行日志。

镜像推送结果:登录 Docker Hub,确认镜像标签包含提交哈希。

四、总结

4.1 核心总结

标准化交付:通过 GitLab CI 实现代码到镜像的端到端自动化,确保环境隔离与版本一致性。

安全增强:敏感数据通过 CI/CD 变量注入,结合 Protected 分支机制规避泄露风险。

性能优化:多级缓存策略(Docker 层、依赖包)减少 60%+ 构建时间。

4.2 GitLab CI vs GitHub Actions
在这里插入图片描述

相关文章:

K8S - GitLab CI 自动化构建镜像入门

一、引言 在现代持续交付(CI/CD)体系中,容器镜像的自动化构建与推送已成为交付链条的重要一环。 GitLab CI/CD 作为 GitLab 平台的原生集成功能,提供了声明式、可扩展的流水线机制,使得开发者可以在代码生命周期内实…...

万兴PDF-PDFelement v11.4.13.3417

万兴PDF专家(Wondershare PDFelement)是一款国产PDF文档全方位解决方案.万兴PDF编辑器软件万兴PDF中文版,专注于PDF的创建,编辑,转换,签名,压缩,合并,比较等功能.万兴PDF专业版PDF编辑软件,以简约风格及强大的功能在国外名声大噪,除了传统功能外,还提供OCR扫描,表格识别,创建笔…...

4.2【LLaMA-Factory实战】金融财报分析系统:从数据到部署的全流程实践

【LLaMA-Factory实战】金融财报分析系统:从数据到部署的全流程实践 一、引言 在金融领域,财报分析是投资决策的核心环节。传统分析方法面临信息提取效率低、风险识别不全面等挑战。本文基于LLaMA-Factory框架,详细介绍如何构建一个专业的金…...

Vue Router 3 使用详解:从零构建嵌套路由页面

Vue Router 是 Vue.js 官方的路由管理器,常用于构建单页面应用(SPA)。本文将手把手带你完成 vue-router3.6.5 的基本配置,并实现一个带有嵌套路由的页面结构。本文适用于 Vue 2.x 项目 一、安装 vue-router3.6.5 npm install vue…...

ChatGPT深度研究功能革新:GitHub直连与强化微调

目录 一、ChatGPT深度研究功能迎来革命性更新 1.1 GitHub直连功能详解 1.2 强化微调(RTF)正式发布 二、GitHub直连功能深度体验 2.1 实际应用场景演示 2.2 技术实现原理探讨 三、强化微调技术解析 3.1 RTF技术核心优势 3.2 适用场景分析 四、开发者反馈与行业影响 4…...

【Ansible】模块详解

一、ansible概述 1.1 ansible介绍 Ansible 是一个基于 Python 开发的配置管理和应用部署工具,近年来在自动化管理领域表现突出。它集成了许多传统运维工具的优点,几乎可以实现 Pubbet 和 Saltstack 所具备的功能。 1.2 ansible能做什么 批量处理。An…...

深入理解C/C++内存管理:从基础到高级优化实践

一、内存区域划分与基础管理机制​​ ​​栈(Stack)​​ 栈由系统自动管理,用于存储函数调用时的局部变量、参数及返回地址。其特点是高效但空间有限(通常1-8MB),遵循后进先出(LIFO)…...

两台服务器之前共享文件夹

本文环境 服务器A:ubuntu24.22系统 IP:10.0.8.1 服务器B:ubuntu24.22系统 IP:10.0.8.10 本操作旨在将服务器B的/opt/files目录共享给服务器A得/opt/files 在 B 服务器上设置共享 安装 NFS 服务: sudo apt -y install nfs-kernel-server编辑/etc/exports文件&…...

stm32之USART

目录 1.引入1.1 通信接口1.2 串口 2.USART2.1 简介2.2 框图2.3 基本机构图2.4 数据帧2.5 波特率发生器2.6 数据包2.6.1 数据模式2.6.2 HEX数据包2.6.3 文本数据包2.6.4 HEX数据包接收2.6.5 文本数据包接收 3.结构体和相关API3.1 结构体3.2 API3.2.1 **初始化相关函数**void USA…...

使用 systemd 管理 Linux 服务:配置与自动重启指南

使用 systemd (推荐,适用于大多数 Linux 发行版) systemd 是现代 Linux 系统中最常用的服务管理器。它能可靠地管理进程,并在进程崩溃时自动重启。 创建 systemd 服务文件: 创建一个文件,例如 /etc/systemd/system/app.service…...

【计算机视觉】Car-Plate-Detection-OpenCV-TesseractOCR:车牌检测与识别

Car-Plate-Detection-OpenCV-TesseractOCR:车牌检测与识别技术深度解析 在计算机视觉领域,车牌检测与识别(License Plate Detection and Recognition, LPDR)是一个极具实用价值的研究方向,广泛应用于智能交通系统、安…...

《Spring Boot 3.0全新特性详解与实战案例》

大家好呀!今天让我们轻松掌握Spring Boot 3.0的所有新特性!🚀 📌 第一章:Spring Boot 3.0简介 1.1 什么是Spring Boot 3.0? Spring Boot 3.0就像是Java开发者的"超级工具箱"🧰&…...

二叉树的深度

二叉树的深度是指从根节点到叶子节点的最长路径上的节点数。 一、最大深度 104. 二叉树的最大深度 - 力扣(LeetCode) 最大深度是指从根节点到最远叶子节点的最长路径上的节点数。 //递归法 /*** Definition for a binary tree node.* public class T…...

科技创业园共享会议室线上预约及智能密码锁系统搭建指南

为科技创业园区的运营管理者,我深知高效利用会议室资源的重要性。2023年第三季度,我们园区启动会议室智能化改造项目,经过三个月的实践,成功将32间共享会议室升级为"线上预约智能门锁"管理模式。现将改造经验分享如下&a…...

自定义prometheus exporter实现监控阿里云RDS

# 自定义 Prometheus Exporter 实现多 RDS 数据采集## 背景1. Prometheus 官网提供的 MySQL Exporter 对于 MySQL 实例只能一个进程监控一个实例,数据库实例很多的情况下,不方便管理。 2. 内部有定制化监控需求,RDS 默认无法实现,…...

LeetCode 3342.到达最后一个房间的最少时间 II:dijkstra算法(和I一样)

【LetMeFly】3342.到达最后一个房间的最少时间 II:dijkstra算法(和I一样) 力扣题目链接:https://leetcode.cn/problems/find-minimum-time-to-reach-last-room-ii/ 有一个地窖,地窖中有 n x m 个房间,它们呈网格状排布。 给你一…...

iOS创建Certificate证书、制作p12证书流程

一、创建Certificates 1、第一步得先在苹果电脑上创建一个.certSigningRequest的文件。首先打开钥匙串,使用快捷键【command空格】——输入【钥匙串】回车(找不到就搜一下钥匙串访问使用手册) 2、然后在苹果电脑的左上角菜单栏选择【钥匙串…...

特殊配合力(SCA)作为全基因组关联分析(GWAS)的表型,其生物学意义和应用价值

生物学意义 解析非加性遗传效应 特殊配合力(SCA)主要反映特定亲本组合的杂交优势,由非加性遗传效应(如显性、超显性、上位性)驱动。显性效应涉及等位基因间的显性互作,上位性效应则涉及不同位点间的基因互作。通过SCA-GWAS,可以定位调控这些非加性效应的关键基因组区域…...

Python实例题:Python快速获取斗图表情

目录 Python实例题 题目 python-get-meme-imagesPython 快速获取斗图表情脚本 代码解释 get_meme_images 函数: download_images 函数: 主程序: 运行思路 注意事项 Python实例题 题目 Python快速获取斗图表情 python-get-meme-im…...

探索表访问方法功能:顺序扫描分析

引言 在之前的文章中,我们讨论了 PostgreSQL 表访问方法 API 的基础知识以及堆元组(heap tuple)与元组表槽(Tuple Table Slot,简称 TTS)之间的区别。 本文将深入探讨 PostgreSQL 核心如何通过特定的 API …...

RISC-V CLINT、PLIC及芯来ECLIC中断机制分析 —— RISC-V中断机制(一)

在长期的嵌入式开发实践中,对中断机制的理解始终停留在表面层次,特别当开发者长期局限于纯软件抽象层面时,对中断机制的理解极易陷入"知其然而不知其所以然"的困境,这种认知的局限更为明显;随着工作需要不断…...

Idea Code Templates配置

Templates配置 配置位置模板案例 配置位置 Settings->Editor->File and Code Templates模板案例 #if (${PACKAGE_NAME} && ${PACKAGE_NAME} ! "")package ${PACKAGE_NAME};#endimport com.ktools.common.dataprocess.DataProcess; import com.ktools…...

fakebook

解题方法&#xff1a; 一.用御剑扫描后台&#xff0c;查看robot.txt文件&#xff0c;发现是一个/user.php.bak,备份文件&#xff0c;我们访问这个文件 <?phpclass UserInfo {public $name "";public $age 0;public $blog "";public function __co…...

英伟达Blackwell架构重构未来:AI算力革命背后的技术逻辑与产业变革

——从芯片暴力美学到分布式智能体网络&#xff0c;解析英伟达如何定义AI基础设施新范式 开篇&#xff1a;当算力成为“新石油”&#xff0c;英伟达的“炼油厂”如何升级&#xff1f; 2025年3月&#xff0c;英伟达GTC大会上&#xff0c;黄仁勋身披标志性皮衣&#xff0c;宣布了…...

用 Rust 搭建一个优雅的多线程服务器:从零开始的详细指南

嘿&#xff0c;小伙伴们&#xff01;今天咱们来聊聊怎么用 Rust 搭建一个牛气哄哄的多线程服务器&#xff0c;还能在需要的时候优雅地关机。为啥要用 Rust 呢&#xff1f;因为 Rust 是个超级靠谱的语言&#xff0c;它能保证内存安全&#xff0c;写并发代码的时候不用担心那些让…...

今日行情明日机会——20250509

上证指数今天缩量&#xff0c;整体跌多涨少&#xff0c;走势处于日线短期的高位~ 深证指数今天缩量小级别震荡&#xff0c;大盘股表现更好~ 2025年5月9日涨停股主要行业方向分析 一、核心主线方向 服装家纺&#xff08;消费复苏出口链驱动&#xff09; • 涨停家数&#xf…...

ESP32开发入门(七):HTTP开发实践

一、HTTP协议基础 1.1 什么是HTTP&#xff1f; HTTP&#xff08;HyperText Transfer Protocol&#xff0c;超文本传输协议&#xff09;是互联网上应用最为广泛的一种网络协议&#xff0c;用于从服务器传输超文本到本地浏览器。它是一种无状态的请求/响应协议&#xff0c;工作…...

【强化学习】强化学习算法 - 马尔可夫决策过程

马尔可夫决策过程 (Markov Decision Process, MDP) 1. MDP 原理介绍 马尔可夫决策过程 (MDP) 是强化学习 (Reinforcement Learning, RL) 中用于对序贯决策 (Sequential Decision Making) 问题进行数学建模的标准框架。它描述了一个智能体 (Agent) 与环境 (Environment) 交互的…...

数据结构【二叉搜索树(BST)】

二叉搜索树 1. 二叉搜索树的概念2. 二叉搜索树的性能分析3.二叉搜索树的插入4. 二叉搜索树的查找5. 二叉搜索树的删除6.二叉搜索树的实现代码7. 二叉搜索树key和key/value使用场景7.1 key搜索场景&#xff1a;7.2 key/value搜索场景&#xff1a; 1. 二叉搜索树的概念 二叉搜索…...

振动临近失效状态,怎么频谱会是梳子?

这是一个破坏性试验的终末期振动波形。左边时域&#xff0c;右边频域。这是咋回事&#xff0c;时域看起来原本很正常的冲击信号&#xff0c;怎么频域是那个鬼样子。 同一组波形&#xff0c;放大后的频域 - 低频部分&#xff1a; 一个解释&#xff1a;...

橡胶制品行业质检管理的痛点 质检LIMS如何重构橡胶制品质检价值链

橡胶制品广泛应用于汽车、医疗、航空等领域&#xff0c;其性能稳定性直接关联终端产品的安全性。从轮胎耐磨性测试到密封件耐腐蚀性验证&#xff0c;每一项检测数据都是企业参与市场竞争的核心筹码。然而&#xff0c;传统实验室管理模式普遍面临设备调度混乱、检测流程追溯断层…...

【CTFSHOW_Web入门】命令执行

文章目录 命令执行web29web30web31web32web33web34web35web36web37web38web39web40web41web42web43web44web45web46web47web48web49web50web51web52web53web54web55web56web57web58web59web60web61web62web63web64web65web66web67web68web69web70web71web72web73web74web75web7…...

三维底座+智能应用,重构城市治理未来

在“数字中国”战略的引领下&#xff0c;住房和城乡建设领域正迎来一场深刻的数字化转型浪潮。2024年《“数字住建”建设整体布局规划》的发布&#xff0c;明确提出以“CIM”&#xff08;城市信息模型&#xff09;为核心&#xff0c;构建城市三维数字底座&#xff0c;推动住建行…...

养生:塑造健康生活的良方

养生是一场贯穿生活的自我关爱行动&#xff0c;从饮食、运动、睡眠到心态调节&#xff0c;每一个环节都对健康有着深远影响。以下为你带来全面且实用的养生策略。 饮食养生&#xff1a;科学搭配&#xff0c;呵护肠胃 合理规划三餐&#xff0c;遵循 “早营养、午均衡、晚清淡”…...

docker 镜像的导出和导入(导出完整镜像和导出容器快照)

一、导出原始镜像 1. 使用 docker save 导出完整镜像 适用场景&#xff1a;保留镜像的所有层、元数据、标签和历史记录&#xff0c;适合迁移或备份完整镜像环境。 操作命令 docker save -o <导出文件名.tar> <镜像名:标签>示例&#xff1a;docker save -o milvu…...

NestJS 框架深度解析

框架功能分析 NestJS 是一个基于 Node.js 的渐进式框架&#xff0c;专为构建高效、可扩展的服务器端应用程序而设计。其核心理念结合了 面向对象编程&#xff08;OOP&#xff09;、函数式编程&#xff08;FP&#xff09; 和 函数式响应式编程&#xff08;FRP&#xff09;&…...

游戏引擎学习第267天:为每个元素添加裁剪矩形

仓库已满:https://gitee.com/mrxiao_com/2d_game_6 新仓库:https://gitee.com/mrxiao_com/2d_game_7 回顾并为今天的内容定下基调 我们今天的主要目标是对游戏的调试“Top List”进行改进&#xff0c;也就是用来显示游戏中耗时最多的函数或模块的性能分析列表。昨天我们已经实…...

基于阿里云DataWorks的物流履约时效离线分析

基于阿里云DataWorks的物流履约时效离线分析2. 数仓模型构建 ORC和Parquet区别&#xff1a; 压缩率与查询性能 压缩率 ORC通常压缩率更高&#xff0c;文件体积更小&#xff0c;适合存储成本敏感的场景。 Parquet因支持更灵活的嵌套结构&#xff0c;压缩率略…...

web 自动化之 selenium 元素四大操作三大切换等待

文章目录 一、元素的四大操作二、三大切换&等待1、切换窗口:当定位的元素不在当前窗口&#xff0c;则需要切换窗口2、切换iframe&#xff1a;当定位的元素在frame/iframe&#xff0c;则需要切换 一、元素的四大操作 1、输入 2、点击 3、获取文本 4、获取属性 import time…...

前端取经路——性能优化:唐僧的九道心经

大家好&#xff0c;我是老十三&#xff0c;一名前端开发工程师。性能优化如同唐僧的九道心经&#xff0c;是前端修行的精髓所在。在本文中&#xff0c;我将为你揭示从网络传输到渲染优化的九大关键技术&#xff0c;涵盖HTTP协议、资源加载策略、缓存控制等核心难题。通过这些实…...

前端工程化和性能优化问题详解

选自己熟悉的内容当作重难点&#xff0c;最好是前端相关的 以下是面向前端面试官介绍前端工程化和性能优化问题的结构化回答框架&#xff0c;结合行业标准和实战经验进行整合&#xff1a; 一、前端工程化核心解析 定义与目标 前端工程化是通过工具链和规范化流程&#xff0c;将…...

【应急响应】- 日志流量如何分析?

【应急响应】- 日志流量如何下手&#xff1f;https://mp.weixin.qq.com/s/dKl8ZLZ0wjuqUezKo4eUSQ...

8b10b编解码仿真

一、基本概念 8B/10B编码&#xff08;8-bit to 10-bit encoding&#xff09;是一种将8位数据&#xff08;包括数据字符和控制字符&#xff09;转换为10位符号&#xff08;Symbol&#xff09;的编码技术&#xff0c;由IBM工程师Al Widmer和Peter Franaszek于1983年提出。其核心思…...

软件工程之面向对象分析深度解析

前文基础&#xff1a; 1.软件工程学概述&#xff1a;软件工程学概述-CSDN博客 2.软件过程深度解析&#xff1a;软件过程深度解析-CSDN博客 3.软件工程之需求分析涉及的图与工具&#xff1a;软件工程之需求分析涉及的图与工具-CSDN博客 4.软件工程之形式化说明技术深度解…...

常见标签语言的对比

XML、JSON 和 YAML 是常见的数据序列化格式 相同点 结构化数据表示 三者均支持嵌套结构&#xff0c;能描述复杂的数据层级关系&#xff08;如对象、数组、键值对&#xff09;。跨平台兼容性 均为纯文本格式&#xff0c;可被多种编程语言解析&#xff0c;适用于跨系统数据交换…...

【Linux】环境变量(图文)

目录 一、main函数的参数解释&#xff1a; 1、argc和argc的解释 2、为什么要这样设置&#xff1f; 3、注意&#xff1a; 4、命令行计算器&#xff1a; 二、认识环境变量 三、见见环境变量 1、执行一个程序的前提 2、指令&#xff1a;echo $PATH 3、为什么系统自带的指令…...

基于OpenCV的人脸识别:EigenFaces算法

文章目录 引言一、概述二、代码解析1. 准备工作2. 加载训练图像3. 设置标签4. 准备测试图像5. 创建和训练识别器6. 进行预测7. 显示结果 三、代码要点总结 引言 人脸识别是计算机视觉领域的一个重要应用&#xff0c;今天我将通过一个实际案例来展示如何使用OpenCV中的EigenFac…...

跟我学C++中级篇——STL容器的查找对比

一、C标准库的查找 在C的STL中&#xff0c;对容器或相关序列的查找中&#xff0c;有两种方式&#xff0c;一种是std::find&#xff0c;另外一种是std::search。而且在它们的基础上&#xff0c;还衍生出std::find_if、std::find_if_not、std::find_end等和std::search_n、range…...

解构C++高级命名空间:构建空间作用域·控制兼容

前引&#xff1a;C作为C语言的继承者&#xff0c;也是其掘墓人。在编程语言的演化长河中&#xff0c;C始终游走在【兼容】与【革新】的路上。C程序员眼中&#xff08;高效直接&#xff09;的全局函数&#xff0c;对于C开发者来说是【命名空间污染的炸弹】&#xff0c;如果C未发…...

怎么判断是不是公网IP?如何查看自己本地路由器是内网ip还是公网?

在网络世界中&#xff0c;IP 地址如同每台设备的 “门牌号”&#xff0c;起着至关重要的标识作用。而 IP 地址又分为公网 IP 和私网 IP&#xff0c;准确判断一个 IP 属于哪一类&#xff0c;对于网络管理、网络应用开发以及理解网络架构等都有着重要意义。接下来&#xff0c;我们…...