【Hot 100】 146. LRU 缓存
目录
- 引言
- LRU 缓存
- 官方解题
- LRU实现
- 📌 实现步骤分解
- 步骤 1:定义双向链表节点
- 步骤 2:创建伪头尾节点(关键设计)
- 步骤 3:实现链表基础操作
- 操作 1:添加节点到头部
- 操作 2:移除任意节点
- 步骤 4:实现关键组合操作
- 操作 3:移动节点到头部(访问时调用)
- 操作 4:移除尾部节点(淘汰时调用)
- 步骤 5:初始化缓存结构
- 步骤 6:实现 get 操作
- 步骤 7:实现 put 操作
- 🔑 关键设计验证点
- 🚀 完整实现代码
- 💡 实现要点总结
- 🙋♂️ 作者:海码007
- 📜 专栏:算法专栏
- 💥 标题:【Hot 100】 146. LRU 缓存
- ❣️ 寄语:书到用时方恨少,事非经过不知难!
引言
这题好像几年前就是hard。后面变成medium了。感觉就是普通人只做1~2遍,都不能独立记住整个实现过程。做到第3遍时大概能记得思路开始独立写代码了,但是会遇到各种问题不能bug free的AC掉。需要练很多遍才能真的在面试中写对的。这题应该就是靠代码功底的,看能不能现场写出bug free或者能debug出来。
上面的这个是别人写的评论,看着确实是这么回事。今天能把这道题写完就算ok了。这个相当于设计一个类了。
LRU 缓存
- 🎈 题目链接:
- 🎈 做题状态:
官方解题
这道题涉及的知识面确实比较多,第一次做的话不容易ac。可以多写几次。
struct DLinkedNode {int key, value;DLinkedNode* prev;DLinkedNode* next;DLinkedNode() : key(0), value(0), prev(nullptr), next(nullptr) {}DLinkedNode(int _key, int _value) : key(_key), value(_value), prev(nullptr), next(nullptr) {}
};class LRUCache {
private:unordered_map<int, DLinkedNode*> cache;DLinkedNode* head;DLinkedNode* tail;int size;int capacity;public:LRUCache(int _capacity) : capacity(_capacity), size(0) {// 使用伪头部和伪尾部节点head = new DLinkedNode();tail = new DLinkedNode();head->next = tail;tail->prev = head;}int get(int key) {// 判断当前key是否存在if (!cache.count(key)){return -1;}// 通过哈希表快速的找到节点DLinkedNode* node = cache[key];moveToHead(node);return node->value;}void put(int key, int value) {// 判断当前key是否存在if (!cache.count(key)){// 不存在,则创建一个新节点DLinkedNode* node = new DLinkedNode(key, value);// 将其添加到哈希表中cache[key] = node;// 将新的节点添加到双向链表的头部,因为是新使用的addToHead(node);++size;// 判断当前链表大小是否超过容量,如果超出容量,则需要删除尾部节点if (size > capacity){DLinkedNode* removed = removedTail();cache.erase(removed->key);delete removed;--size;}}else{// 如果当前key存在,先通过哈希表定位,再修改value,并移动到头部DLinkedNode* node = cache[key];node->value = value;moveToHead(node);}}// 将节点添加到头部void addToHead(DLinkedNode* node){node->prev = head;node->next = head->next;head->next->prev = node;head->next = node;}// 移除节点(不释放节点内存)void removeNode(DLinkedNode* node){node->prev->next = node->next;node->next->prev = node->prev;}// 将节点移动到头部void moveToHead(DLinkedNode* node){removeNode(node);addToHead(node);}// 将移除的节点返回给外部进行处理释放DLinkedNode* removedTail(){DLinkedNode* node = tail->prev;removeNode(node);return node;}
};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/
LRU实现
我将把 LRU 缓存的实现拆解为 7 个清晰的步骤,并配以关键代码片段。让我们像搭积木一样逐步构建这个数据结构:
📌 实现步骤分解
步骤 1:定义双向链表节点
目的:创建存储数据的基本单元
struct Node {int key; // 用于删除尾节点时反向查找哈希表int value;Node* prev;Node* next;Node(int k, int v) : key(k), value(v), prev(nullptr), next(nullptr) {}
};
步骤 2:创建伪头尾节点(关键设计)
目的:消除边界条件判断,简化链表操作
class LRUCache {
private:Node* dummyHead; // 永远指向虚拟头部节点Node* dummyTail; // 永远指向虚拟尾部节点// 初始化伪头尾dummyHead = new Node(-1, -1);dummyTail = new Node(-1, -1);dummyHead->next = dummyTail;dummyTail->prev = dummyHead;
步骤 3:实现链表基础操作
操作 1:添加节点到头部
void addToHead(Node* node) {// 新节点的前后指针node->prev = dummyHead;node->next = dummyHead->next;// 调整原有链接dummyHead->next->prev = node;dummyHead->next = node;
}
操作 2:移除任意节点
void removeNode(Node* node) {node->prev->next = node->next;node->next->prev = node->prev;
}
步骤 4:实现关键组合操作
操作 3:移动节点到头部(访问时调用)
void moveToHead(Node* node) {removeNode(node); // 从当前位置移除addToHead(node); // 添加到头部
}
操作 4:移除尾部节点(淘汰时调用)
Node* removeTail() {Node* node = dummyTail->prev; // 真实尾节点removeNode(node);return node;
}
步骤 5:初始化缓存结构
class LRUCache {
private:unordered_map<int, Node*> cache; // 哈希表int capacity; // 容量限制public:LRUCache(int cap) : capacity(cap) {// 初始化伪头尾(见步骤2)}
};
步骤 6:实现 get 操作
int get(int key) {if (!cache.count(key)) return -1; // 未命中Node* node = cache[key];moveToHead(node); // 更新为最近使用return node->value;
}
步骤 7:实现 put 操作
void put(int key, int value) {if (cache.count(key)) { // 已存在Node* node = cache[key];node->value = value; // 更新值moveToHead(node); // 设为最新} else { // 新增数据Node* node = new Node(key, value);cache[key] = node; // 记录到哈希表addToHead(node); // 添加到链表if (cache.size() > capacity) {Node* removed = removeTail(); // 淘汰最旧cache.erase(removed->key); // 从哈希表删除delete removed; // 释放内存}}
}
🔑 关键设计验证点
测试场景 | 预期操作 | 验证方法 |
---|---|---|
缓存未满时插入 | 新节点添加到头部 | 检查链表头部是否为最新节点 |
缓存已满时插入 | 淘汰尾节点后添加新节点到头部 | 检查链表长度是否保持 capacity |
访问已有节点 | 节点被移动到头部 | 执行get后检查节点位置 |
更新已有节点的值 | 值被更新且节点移到头部 | 检查值变化和节点位置 |
🚀 完整实现代码
#include <unordered_map>
using namespace std;struct Node {int key, value;Node *prev, *next;Node(int k, int v) : key(k), value(v), prev(nullptr), next(nullptr) {}
};class LRUCache {
private:unordered_map<int, Node*> cache;Node *dummyHead, *dummyTail;int capacity;void addToHead(Node* node) {node->prev = dummyHead;node->next = dummyHead->next;dummyHead->next->prev = node;dummyHead->next = node;}void removeNode(Node* node) {node->prev->next = node->next;node->next->prev = node->prev;}void moveToHead(Node* node) {removeNode(node);addToHead(node);}Node* removeTail() {Node* node = dummyTail->prev;removeNode(node);return node;}public:LRUCache(int cap) : capacity(cap) {dummyHead = new Node(-1, -1);dummyTail = new Node(-1, -1);dummyHead->next = dummyTail;dummyTail->prev = dummyHead;}int get(int key) {if (!cache.count(key)) return -1;Node* node = cache[key];moveToHead(node);return node->value;}void put(int key, int value) {if (cache.count(key)) {Node* node = cache[key];node->value = value;moveToHead(node);} else {Node* node = new Node(key, value);cache[key] = node;addToHead(node);if (cache.size() > capacity) {Node* removed = removeTail();cache.erase(removed->key);delete removed;}}}
};
💡 实现要点总结
-
双数据结构协作:
- 哈希表:O(1) 时间查找
- 双向链表:维护访问顺序
-
伪节点的妙用:
- 消除头尾节点的特殊判断
- 统一所有节点的操作逻辑
-
操作原子化:
- 将链表操作分解为独立方法
- 提高代码可读性和可维护性
-
内存管理:
- 淘汰节点时需手动释放内存
- 插入新节点时动态分配内存
通过这种分步实现方式,可以更清晰地理解每个组件的作用,也便于在开发过程中逐步测试验证每个功能的正确性。
相关文章:
【Hot 100】 146. LRU 缓存
目录 引言LRU 缓存官方解题LRU实现📌 实现步骤分解步骤 1:定义双向链表节点步骤 2:创建伪头尾节点(关键设计)步骤 3:实现链表基础操作操作 1:添加节点到头部操作 2:移除任意节点 步骤…...
web应用开发说明文档
工程目录结构 FACTORY--bin #网络流可执行程序 参考后文1.1部分文字说明webrtc-streamer--deployment #部署相关的配置--mysql #参考1.3 mysql数据库详细说明--conf #存放mysql的配置文件--data #存放pem加密…...
快速搜索与管理PDF文档的专业工具
软件介绍 在处理大量PDF文档时,专业的文档管理工具能显著提升工作效率。这款工具能够帮助用户快速检索PDF内容,并提供了便捷的合并与拆分功能,让复杂的PDF操作变得简单高效。 多文件内容检索能力 不同于传统PDF阅读器的单文件搜索局…...
在GPU集群上使用Megatron-LM进行高效的大规模语言模型训练
摘要 大型语言模型在多个任务中已取得了最先进的准确率。然而,训练这些模型的效率仍然面临挑战,原因有二:a) GPU内存容量有限,即使在多GPU服务器上也无法容纳大型模型;b) 所需的计算操作数量可能导致不现实的训练时间。因此,提出了新的模型并行方法,如张量并行和流水线…...
NocoDB:开源的 Airtable 替代方案
NocoDB:开源的 Airtable 替代方案 什么是 NocoDB?NocoDB 的主要特点丰富的电子表格界面工作流自动化应用商店程序化访问 NocoDB 的应用场景使用 Docker 部署 NocoDB1. 创建数据目录2. 运行 Docker 容器3. 访问 NocoDB 注意事项总结 什么是 NocoDB&#x…...
关于Python:7. Python数据库操作
一、sqlite3(轻量级本地数据库) sqlite3 是 Python 内置的模块,用于操作 SQLite 数据库。 SQLite 是一个轻量级、零配置的关系型数据库系统,整个数据库保存在一个文件中,适合小型项目和本地存储。 SQLite 不需要安装…...
修改ollama.service都可以实现什么?
通过修改 ollama.service 系统服务单元文件,可以实现以下核心配置变更: 一、网络与访问控制 监听地址与端口 通过 Environment="OLLAMA_HOST=0.0.0.0:11434" 修改服务绑定的 IP 和端口: 0.0.0.0 允许所有网络接口访问(默认仅限本地 127.0.0.1)。示例:改为 0.0.…...
k8s笔记——kubebuilder工作流程
kubebuilder工作流程 Kubebuilder 工作流程详解 Kubebuilder 是 Kubernetes 官方推荐的 Operator 开发框架,用于构建基于 Custom Resource Definitions (CRD) 的控制器。以下是其核心工作流程的完整说明: 1. 初始化项目 # 创建项目目录 mkdir my-opera…...
长江学者答辩ppt美化_特聘教授_校企联聘学者_青年长江学者PPT案例模板
WordinPPT / 持续为双一流高校、科研院所、企业等提供PPT制作系统服务。 长江学者特聘教授 “长江学者奖励计划”中的一类,是高层次人才计划的重要组成部分,旨在吸引和培养具有国际领先水平的学科带头人。特聘教授需全职在国内高校工作,是高…...
Vscode/Code-Server 安装中文包——CI/CD
前言 啊好多人问我怎么还不更新,其实本月是已经写了一篇测评的,但是鉴于过于超前会给产品带来不好的影响,所以就没有公开。那么既然这样本月就再更新一篇。 首先 声明 一点,安装中文包的初衷不是看不懂英文,也不是对…...
【信息系统项目管理师-论文真题】2012上半年论文详解(包括解题思路和写作要点)
更多内容请见: 备考信息系统项目管理师-专栏介绍和目录 文章目录 试题1:论信息系统工程的风险管理1、写作要点2、解题思路对项目风险的认识和项目风险管理的基本过程、主要方法、工具信息系统项目最主要的风险是什么试题2:论信息系统工程项目可行性研究1、写作要点2、解题思…...
PowerPC架构详解:定义、应用及特点
一、PowerPC架构的定义 PowerPC(Performance Optimization With Enhanced RISC – Performance Computing) 是一种由IBM、摩托罗拉(现NXP)和苹果于1991年联合开发的精简指令集(RISC)处理器架构,…...
IP伪装、代理池与分布式爬虫
一、动态代理IP应用:代理池的获取、选择与使用 代理池技术的核心是通过动态切换IP地址,让爬虫看起来像不同用户在访问网站,从而规避封禁。 (一)代理池的获取途径 1. 免费代理:低成本但高风险 免费代理可…...
【Arthas】火焰图优化应用CPU(问题原因:获取调用栈)
优化场景总结归纳 1. 问题背景 现象:在公共搜索功能中,火焰图分析发现 获取Java调用栈(StackTrace) 占用了约 6%的CPU(日常流量下),系统高负载时占比更高。原因: 每次外部API调用时…...
回溯算法详解(Java实现):从组合到排列的全面解析
引言 回溯算法是一种强大的算法思想,广泛应用于解决各种组合优化问题。它通过系统性地尝试所有可能的解,并在发现当前路径无法得到解时立即回溯,从而高效地找到问题的解。在本文中,我们将深入探讨回溯算法的核心思想、三要素、通…...
【BLE】【nRF Connect】 精讲nRF Connect自动化测试套件(宏录制、XML脚本)
目录 前言 1. nRF Connect自动化测试介绍 1.1. nRF connect宏录制功能介绍 1.2. 电脑端XML方式 1.3 实际应用案例 1.3.1 BLE 稳定性测试 1.3.2 设备固件更新(DFU)测试 1.3.3 批量设备配置 1.4 操作步骤 1.5 注意事项 2. nRF Connect日志记录 2.1. 日志记录功能 …...
springboot war包tomcat中运行报错,启动过滤器异常,一个或多个筛选器启动失败。
错误信息: "level": "ERROR", "thread": "localhost-startStop-1", "class": "o.a.c.c.C.[.[localhost].[/Crmeb-admin]", …...
基于开源AI大模型与AI智能名片S2B2C商城小程序的线上活动执行优化研究
摘要:本文以开源AI大模型、AI智能名片及S2B2C商城小程序为技术载体,探讨线上活动执行阶段的效能提升路径。通过分析某科技展会案例,发现AI智能名片可将参会者信息采集效率提升60%,S2B2C商城小程序的21链动模式使活动裂变传播速度提…...
解决奥壹oelove婚恋原生小程序上架问题,彻底解决解对问题增强版旗舰版通用
现在很多客户还不了解OElove小程序上架流程!因为很多用户对技术无感!随意上架工作都是要靠官方来辅助!这样在在二开性就会失去很多主动权!本人商业用户有全新原生态小程序源码(注意:这是原生非Uniapp&#…...
Java SE(7)——类和对象(二)
1.包(package) 1.1 包的定义 在Java中,包是一种用于组织和管理类,接口和其他包的机制。主要作用是防止命名冲突,并提供一种访问控制机制 1.2 package关键字 package关键字的主要作用是声明当前类在哪个包里面。 当然,用户也可以…...
Python 装饰器优化策略模式:电商促销折扣的优雅解法
问题背景:促销策略的重复陷阱 在电商促销系统中,我们曾面临这样的痛点: promos [fidelity_promo, bulk_item_promo, large_order_promo] # 6.1节原始方案 def best_promo(order):return max(promo(order) for promo in promos)当新增new…...
redis延时队列详细介绍
Redis延时队列是一种利用Redis数据结构的功能来实现延时任务调度的方法。在Redis中,常用的数据结构包括List(列表)和Sorted Set(有序集合)。延时队列通常是通过有序集合来实现的。 具体实现步骤如下: 将延…...
PHP 开发工程师如何借助 DeepSeek 提升工作效率
在当今数字化时代,PHP 开发工程师面临着不断提高工作效率和应对复杂项目需求的挑战。DeepSeek 作为一款先进的人工智能工具,为 PHP 开发工程师提供了一系列强大的功能,能够显著助力其日常工作。从代码生成与优化,到文档撰写和知识…...
Vibe Coding 新时代:AI 辅助编程完全指南
第一章:什么是 Vibe Coding?AI 编程的新范式 在传统编程的世界里,程序员需要掌握语法、算法和框架,一行一行地编写代码。但随着人工智能的快速发展,一种全新的编程方式正在兴起——这就是 Vibe Coding(氛围编程)。 Vibe Coding 的定义 Vibe Coding 是由 AI 研究者 An…...
Oracle RAC ‘Metrics Global Cache Blocks Lost‘告警解决处理
1. 引言: 前段时间鄙人检查处理过Oracle RAC Metrics Global Cache Blocks Lost’告警,在此总结分享下针对该报警的原因分析及处理办法。 2. 具体事件 通过排查发现造成该告警的原因是共享存储控制器损坏导致的。由于发生已经有段时间了,没…...
Go语言入门基础:协程
第21章 协程 目录 21.1 启动Go协程 协程的概念与特点启动协程的方法及示例协程执行顺序的控制 21.2 通道 通道类型及表示方式21.2.1 实例化通道21.2.2 数据缓冲21.2.3 单向通道21.2.4 通道与select语句 21.3 互斥锁 协程并发访问的逻辑问题互斥锁的使用示例 21.4 WaitGroup类…...
Servlet+tomcat
serverlet 定义:是一个接口,定义了java类被浏览器(tomcat识别)的规则 所以我们需要自定义一个类,实现severlet接口复写方法 通过配置类实现路径和servlet的对应关系 执行原理 当用户在浏览器输入路径,会…...
中间件和组件
文章目录 1. 前言2. 中间件介绍3. 组件介绍4. 区别对比5. 简单类比6. 总结 中间件和组件 1. 前言 中间件和组件是软件开发中两个重要的概念,但它们的定位和作用完全不同。中间件解决的事通信、跨系统、安全等问题,组件是解决具体业务模块,提高…...
piccolo-large-zh-v2 和 bge-m3哪个效果好?
环境: piccolo-large-zh-v2 bge-m3 问题描述: piccolo-large-zh-v2 和 bge-m3哪个效果好? 解决方案: 比较Piccolo-large-zh-v2(商汤)与BGE-M3(智源)的效果时,需结合…...
《告别试错式开发:TDD的精准质量锻造术》
深度解锁TDD:应用开发的创新密钥 在应用开发的复杂版图中,如何雕琢出高质量、高可靠性的应用,始终是开发者们不懈探索的核心命题。测试驱动开发(TDD),作为一种颠覆性的开发理念与方法,正逐渐成…...
哈希函数详解(SHA-2系列、SHA-3系列、SM3国密)案例:构建简单的区块链——密码学基础
文章目录 一、密码哈希函数概述1.1 哈希函数的基本概念1.2 哈希函数在数据安全中的应用 二、SHA-2系列算法详解2.1 SHA-2的起源与发展2.2 SHA-256技术细节与实现2.3 SHA-384和SHA-512的特点2.4 SHA-2系列算法的安全性评估 三、SHA-3系列算法详解3.1 SHA-3的起源与设计理念3.2 K…...
CUDA输出“hello world”
在我们学习任何一门编程语言的时候, 无疑当我们真正用其输出“hello world”的时候, 我们已经成功入门, 接下来要做的就是从入门到放弃了😆 接下来我们通过对比C和CUDA来学习CUDA的运行逻辑: C中的hello worldCUDA中的hello world文本编辑器编写源代码, 比如vscod…...
计算机视觉与深度学习 | 视觉里程计算法综述(传统+深度)
视觉里程计算法综述 1. 算法分类与原理1.1 传统几何方法1.2 深度学习方法2. 关键公式与模型2.1 本征矩阵分解2.2 深度学习模型架构3. 代码实现与开源项目3.1 传统方法实现3.2 深度学习方法实现4. 挑战与未来方向总结传统视觉里程计算法综述1. 算法分类与核心原理1.1 特征点法1.…...
c++ 函数参数传递
C 中的值传递和地址传递 在 C 中,函数参数传递主要有两种方式:值传递和地址传递(指针传递和引用传递都属于地址传递的变体)。 1. 值传递 特点 函数接收的是实参的副本对形参的修改不会影响原始变量适用于小型数据(…...
计算机视觉与深度学习 | 什么是图像金字塔?
图像金字塔详解 图像金字塔 图像金字塔详解1. **定义**2. **原理与公式****2.1 高斯金字塔****2.2 拉普拉斯金字塔**3. **代码示例****3.1 使用OpenCV实现****3.2 手动实现高斯模糊与降采样**4. **应用场景**5. **关键点总结**1. 定义 图像金字塔是一种多尺度图像表示方法,将…...
AI超级智能体教程(五)---自定义advisor扩展+结构化json输出
文章目录 1.自定义拦截器1.2自定义Advisor1.2打断点调试过程1.3Re-reading Advisor自定义实现 2.恋爱报告开发--json结构化输出2.1原理介绍2.1代码实现2.3编写测试用例2.4结构化输出效果 1.自定义拦截器 1.2自定义Advisor spring里面的这个默认的是SimpleloggerAdvisor&#…...
ActiveMQ 集群搭建与高可用方案设计(一)
一、引言 在当今分布式系统盛行的时代,消息中间件扮演着至关重要的角色,而 ActiveMQ 作为一款开源的、功能强大的消息中间件,在众多项目中得到了广泛应用。它支持多种消息传输协议,如 JMS、AMQP、MQTT 等 ,能够方便地实…...
MySQL数据操作全攻略:DML增删改与DQL高级查询实战指南
知识点4【MySQL的DDL】 DDL:主要管理数据库、表、列等操作。 库→表(二维)→列(一维) 数据表的第一行是 列名称 数据库是由一张或多张表组成 我们先学习在数据库中创建数据表 0、常见的数据类型: 1、…...
RabbitMQ 中的六大工作模式介绍与使用
文章目录 简单队列(Simple Queue)模式配置类定义消费者定义发送消息测试消费 工作队列(Work Queues)模式配置类定义消费者定义发送消息测试消费负载均衡调优 发布/订阅(Publish/Subscribe)模式配置类定义消…...
一种基于重建前检测的实孔径雷达实时角超分辨方法——论文阅读
一种基于重建前检测的实孔径雷达实时角超分辨方法 1. 专利的研究目标与实际问题意义2. 专利提出的新方法、模型与公式2.1 重建前检测(DBR)与数据裁剪2.1.1 回波模型与检测准则2.1.2 数据裁剪效果2.2 数据自适应迭代更新2.2.1 代价函数与迭代公式2.2.2 矩阵递归更新2.3 正则化…...
代购平台如何“说本地话,穿本地衣”
当海外消费者点开一个代购商城,看到满屏机械翻译的中式文案,他们大概率会默默关闭页面。还有数据显示,不符合本地审美的页面设计会导致70%的潜在客户流失,而专业的本地化改造能让订单转化率提升3倍以上。 01 AI翻译:让…...
C++调试(叁):编译qBreakpad并使用其生成Dump文件
目录 1.前言 2.生成Dump文件的第三方库 3.第三方库下载链接 4.编译qBreakpad 5.VS中使用qBreakpad 6.qBreakpad测试程序 前言 在第二篇文章中,我主要讲解了如何使用SetUnhandledExceptionFilter函数设置程序的异常回调,在设置的回调函数中调用MiniDumpWr…...
0基础 | STM32 | TB6612电机驱动使用
TB6612介绍及使用 单片机通过驱动板连接至电机 原因:单品机I/O口输出电流I小 驱动板:从外部引入高电压,控制电机驱动 电源部分 VM:电机驱动电源输入,输入电压范围建议为3.7~12V GND:逻辑电…...
Cycleresearcher:通过自动化评审改进自动化研究
1、引言 迄今为止,整个科学发现过程自动化的挑战在很大程度上仍未解决,特别是在生成和改进符合同行评审工作高标准的研究成果方面。此外,很少有工作涉及迭代反馈的整合,这对保持学术的健全性和新奇至关重要。当前的模型往往难以适…...
深入理解Redis SDS:高性能字符串的终极设计指南
📍 文章提示 10分钟掌握Redis核心字符串设计 | 从底层结构到源码实现,揭秘SDS如何解决C字符串七大缺陷,通过20手绘图示与可运行的C代码案例,助你彻底理解二进制安全、自动扩容等核心机制,文末附实战优化技巧ÿ…...
【tcp连接windows redis】
tcp连接windows redis 修改redis.conf 修改redis.conf bind * -::*表示禁用保护模式,允许外部网络连接 protected-mode no...
【AI平台】n8n入门6:调用MCP服务(非社区节点)
前言 前边用n8n搭建一个MCP服务,现在,用n8n调用其他服务商提供的MCP服务。本文以高德地图服务为例,记录一下操作过程。 实现案例功能 MCP是啥 MCP(Model Context Protocol,模型上下文协议)是由Anthropi…...
C++负载均衡远程调用学习之 Dns-Route关系构建
目录 1.LARS-DNS-MYSQL环境搭建 2.LARSDNS-系统整体模块的简单说明 3.Lars-Dns-功能说明 4.Lars-Dns-数据表的创建 5.Lars-Dns-整体功能说明 6.Lars-DnsV0.1-Route类的单例实现 7.Lars-DnsV0.1-Route类的链接数据库方法实现 8.Lars-DnsV0.1-定义存放RouteData关系的map数…...
Linux53 百度网盘运行(下载devtoolset11后仍提示stdc++3.0.29缺失 计划用docker容器隔离运行,计划后续再看)
算了 放弃 都用到docker了 计划先看看系统服务后续再研究吧 百度网盘运行(下载devtoolset11后仍提示stdc3.0.29缺失 计划用docker容器隔离运行 但是由于系统服务未扎实,计划后续再看 重新下了el7的版本 刚才已启动成功 单输入xlock不启动 切换用户也不启动 …...
ASP.NET MVC 入门与提高指南八
45. 神经形态计算与 MVC 应用性能革新 45.1 神经形态计算概念 神经形态计算是借鉴生物神经系统的结构和工作原理来设计计算系统。它模仿人脑神经元和突触的工作方式,具备低功耗、高并行性和自适应学习等特性,能在处理复杂感知和认知任务时展现出卓越的…...