当前位置: 首页 > news >正文

JVM——JVM 是如何处理异常的?

JVM 是如何处理异常的?

在 Java 编程语言中,异常处理是一种强大的机制,用于应对程序运行时出现的错误和意外情况。而 Java 虚拟机(JVM)作为 Java 程序运行的核心环境,在异常处理过程中扮演着至关重要的角色。下面我们深入探讨 JVM 是如何处理异常的,从异常的基本概念、抛出与捕获机制、异常处理的性能影响,到 Java 7 引入的新特性等多个方面,进行全面而详细的剖析。

异常的基本概念

在 Java 语言规范中,所有异常都是 Throwable 类或者其子类的实例。Throwable 类有两个直接子类:ErrorException

  • Error :表示程序不应捕获的异常。当程序触发 Error 时,通常意味着程序的执行状态已经无法恢复,需要中止线程甚至是中止虚拟机。例如,OutOfMemoryError 表示内存溢出错误,VirtualMachineError 表示虚拟机错误等。这些错误往往是由系统级问题或资源耗尽等问题引起的,应用程序一般无法对其进行有效的处理。

  • Exception :涵盖程序可能需要捕获并且处理的异常。Exception 类又可以分为 RuntimeException 和其他类型的异常(即检查异常)。

RuntimeException 用来表示 “程序虽然无法继续执行,但是还能抢救一下” 的情况,如 ArrayIndexOutOfBoundsException(数组索引越界异常)、NullPointerException(空指针异常)等。RuntimeExceptionError 属于 Java 里的非检查异常(unchecked exception),而其他异常则属于检查异常(checked exception)。

在 Java 语法中,所有的检查异常都需要程序显式地捕获,或者在方法声明中用 throws 关键字标注。通常情况下,程序中自定义的异常应为检查异常,以便最大化利用 Java 编译器的编译时检查。这种检查机制可以在编译阶段帮助开发者发现潜在的异常处理问题,提高程序的健壮性。

异常的抛出与捕获机制

(一)抛出异常

抛出异常可分为显式和隐式两种。

  • 显式抛异常 :主体是应用程序,指的是在程序中使用 “throw” 关键字,手动将异常实例抛出。例如下面代码中,当年龄为负数时,程序显式地抛出一个 IllegalArgumentException 异常,提示年龄不能为负数。​

    if (age < 0) {throw new IllegalArgumentException("年龄不能为负数");
    }
  • 隐式抛异常 :主体则是 Java 虚拟机,它指的是 Java 虚拟机在执行过程中,碰到无法继续执行的异常状态,自动抛出异常。例如,Java 虚拟机在执行读取数组操作时,发现输入的索引值是负数,故而抛出数组索引越界异常(ArrayIndexOutOfBoundsException):  

     int[] arr = new int[5]; int value = arr[-1]; // 隐式抛出 ArrayIndexOutOfBoundsException

(二)捕获异常

捕获异常涉及如下三种代码块:

  • try 代码块 :用来标记需要进行异常监控的代码。开发者将可能抛出异常的代码放在 try 块中,以便 JVM 对其进行监控。

  • catch 代码块 :跟在 try 代码块之后,用来捕获在 try 代码块中触发的某种指定类型的异常。除了声明所捕获异常的类型之外,catch 代码块还定义了针对该异常类型的异常处理器。在 Java 中,try 代码块后面可以跟着多个 catch 代码块,来捕获不同类型的异常。Java 虚拟机会从上至下匹配异常处理器。因此,前面的 catch 代码块所捕获的异常类型不能覆盖后边的,否则编译器会报错。例如下面例子中,如果 try 块中的代码抛出了 IOException,则会被第一个 catch 块捕获并处理;如果抛出了其他类型的异常(如 NullPointerException 等),则会被第二个 catch 块捕获并处理。​

    try {// 可能抛出多种异常的代码
    } catch (IOException e) {// 处理 IOException 异常
    } catch (Exception e) {// 处理其他类型的异常
    }
  • finally 代码块 :跟在 try 代码块和 catch 代码块之后,用来声明一段必定运行的代码。它的设计初衷是为了避免跳过某些关键的清理代码,例如关闭已打开的系统资源。在程序正常执行的情况下,这段代码会在 try 代码块之后运行。否则,也就是 try 代码块触发异常的情况下:  

    • 如果该异常没有被捕获,finally 代码块会直接运行,并且在运行之后重新抛出该异常。  

    • 如果该异常被 catch 代码块捕获,finally 代码块则在 catch 代码块之后运行。在某些不幸的情况下,catch 代码块也触发了异常,那么 finally 代码块同样会运行,并会抛出 catch 代码块触发的异常。在某些极端不幸的情况下,finally 代码块也触发了异常,那么只好中断当前 finally 代码块的执行,并往外抛异常。 ​

JVM 如何捕获异常

在编译生成的字节码中,每个方法都附带一个异常表。异常表中的每一个条目代表一个异常处理器,并且由 from 指针、to 指针、target 指针以及所捕获的异常类型构成。这些指针的值是字节码索引(bytecode index,bci),用以定位字节码。

其中,from 指针和 to 指针标示了该异常处理器所监控的范围,例如 try 代码块所覆盖的范围。target 指针则指向异常处理器的起始位置,例如 catch 代码块的起始位置。

举个例子,在以下代码中:

public static void main(String[] args) {try {mayThrowException();} catch (Exception e) {e.printStackTrace();}
}

编译过后,该方法的异常表拥有一个条目。其 from 指针和 to 指针分别为 0 和 3,代表它的监控范围从索引为 0 的字节码开始,到索引为 3 的字节码结束(不包括 3)。该条目的 target 指针是 6,代表这个异常处理器从索引为 6 的字节码开始。条目的最后一列,代表该异常处理器所捕获的异常类型正是 Exception

当程序触发异常时,Java 虚拟机会从上至下遍历异常表中的所有条目。当触发异常的字节码的索引值在某个异常表条目的监控范围内,Java 虚拟机会判断所抛出的异常和该条目想要捕获的异常是否匹配。如果匹配,Java 虚拟机会将控制流转移至该条目 target 指针指向的字节码。

如果遍历完所有异常表条目,Java 虚拟机仍未匹配到异常处理器,那么它会弹出当前方法对应的 Java 栈帧,并且在调用者(caller)中重复上述操作。在最坏情况下,Java 虚拟机需要遍历当前线程 Java 栈上所有方法的异常表。

异常处理的性能影响

异常实例的构造十分昂贵。这是由于在构造异常实例时,Java 虚拟机便需要生成该异常的栈轨迹(stack trace)。该操作会逐一访问当前线程的 Java 栈帧,并且记录下各种调试信息,包括栈帧所指向方法的名字,方法所在的类名、文件名,以及在代码中的第几行触发该异常。

当然,在生成栈轨迹时,Java 虚拟机会忽略掉异常构造器以及填充栈帧的 Java 方法(Throwable.fillInStackTrace),直接从新建异常位置开始算起。此外,Java 虚拟机还会忽略标记为不可见的 Java 方法栈帧。

既然异常实例的构造十分昂贵,那么在实践中,我们应尽量避免频繁抛出和捕获异常,以免对程序性能造成较大影响。例如,在循环中抛出和捕获异常可能会导致程序运行缓慢。

Java 7 的新特性

(一)Supressed 异常

Java 7 引入了 Supressed 异常来解决异常链问题。这个新特性允许开发人员将一个异常附于另一个异常之上。因此,抛出的异常可以附带多个异常的信息。

然而,Java 层面的 finally 代码块缺少指向所捕获异常的引用,所以这个新特性使用起来非常繁琐。为此,Java 7 专门构造了一个名为 try-with-resources 的语法糖,在字节码层面自动使用 Supressed 异常。

(二)try-with-resources

try-with-resources 语法糖的主要目的是精简资源打开关闭的用法。在 Java 7 之前,对于打开的资源,我们需要定义一个 finally 代码块,来确保该资源在正常或者异常执行状况下都能关闭。资源的关闭操作本身容易触发异常。因此,如果同时打开多个资源,那么每一个资源都要对应一个独立的 try-finally 代码块,以保证每个资源都能够关闭。这样一来,代码将会变得十分繁琐。

Java 7 的 try-with-resources 语法糖极大地简化了上述代码。程序可以在 try 关键字后声明并实例化实现了 AutoCloseable 接口的类,编译器将自动添加对应的 close() 操作。在声明多个 AutoCloseable 实例的情况下,编译生成的字节码类似于上面手工编写代码的编译结果。与手工代码相比,try-with-resources 还会使用 Supressed 异常的功能,来避免原异常 “被消失”。

例如:

public class Foo implements AutoCloseable {private final String name;public Foo(String name) { this.name = name; }@Overridepublic void close() {throw new RuntimeException(name);}public static void main(String[] args) {try (Foo foo0 = new Foo("Foo0");Foo foo1 = new Foo("Foo1");Foo foo2 = new Foo("Foo2")) {throw new RuntimeException("Initial");}}
}

运行结果:

Exception in thread "main" java.lang.RuntimeException: Initialat Foo.main(Foo.java:18)Suppressed: java.lang.RuntimeException: Foo2at Foo.close(Foo.java:13)at Foo.main(Foo.java:19)Suppressed: java.lang.RuntimeException: Foo1at Foo.close(Foo.java:13)at Foo.main(Foo.java:19)Suppressed: java.lang.RuntimeException: Foo0at Foo.close(Foo.java:13)at Foo.main(Foo.java:19)

(三)多异常捕获

Java 7 还支持在同一 catch 代码块中捕获多种异常。实际实现非常简单,生成多个异常表条目即可。例如:

try {// 可能抛出多种异常的代码
} catch (IOException | SQLException e) {// 处理多种异常
}

实践分析

为了更好地理解 JVM 如何处理异常,我们可以进行一些实践分析。例如,查看以下代码:

public class Foo {private int tryBlock;private int catchBlock;private int finallyBlock;private int methodExit;public void test() {for (int i = 0; i < 100; i++) {try {tryBlock = 0;if (i < 50) {continue;} else if (i < 80) {break;} else {return;}} catch (Exception e) {catchBlock = 1;} finally {finallyBlock = 2;}}methodExit = 3;}
}

我们可以使用 javap -c 命令查看编译后的字节码,分析异常处理的机制。通过观察字节码,我们可以更深入地了解 JVM 如何处理 try-catch-finally 代码块,以及异常表条目的生成和匹配过程。

总结

本文详细探讨了 JVM 是如何处理异常的,包括异常的基本概念、抛出与捕获机制、异常处理的性能影响,以及 Java 7 引入的新特性等内容。通过深入理解这些知识,开发者可以在实际开发中更加合理地使用异常处理机制,提高程序的健壮性和性能。

在实际开发中,我们应尽量遵循以下原则:

  • 避免滥用异常来控制流程,因为异常处理机制相对耗时。

  • 合理使用检查异常和非检查异常,根据实际情况判断是否需要显式捕获或声明抛出异常。

  • 善用 Java 7 的新特性,如 try-with-resources 和多异常捕获,简化代码并提高异常处理的效率。

掌握 JVM 的异常处理机制对于 Java 开发者来说至关重要,它有助于我们编写出更高质量、更可靠的 Java 程序。

相关文章:

JVM——JVM 是如何处理异常的?

JVM 是如何处理异常的&#xff1f; 在 Java 编程语言中&#xff0c;异常处理是一种强大的机制&#xff0c;用于应对程序运行时出现的错误和意外情况。而 Java 虚拟机&#xff08;JVM&#xff09;作为 Java 程序运行的核心环境&#xff0c;在异常处理过程中扮演着至关重要的角色…...

网络基础-----C语言经典题目(12)

一、MTU&#xff0c;IP 协议头中 TTL是什么&#xff1f; MTU 指的是网络层能够接收的最大数据包大小&#xff0c;单位为字节。主要作用是限制数据链路层一次能够传输的数据量。 IP 协议头中的 TTL 是 IP 数据头部的一个 8 位字段&#xff0c;最初它的设计目的是限制数据包在网络…...

【第十六届蓝桥杯省赛】比赛心得与经验分享(PythonA 组)

文章目录 一、我的成绩二、我的备赛经历三、如何备赛&#xff08;个人观点&#xff09;1. 基础语法2. 数据结构3. 算法4. 数学 四、做题技巧与注意事项五、我的题解试题A 偏蓝 &#x1f3c6;100%试题B IPV6 &#x1f3c6;0%试题C 2025图形 &#x1f3c6;100%试题D 最大数字 &am…...

解决Maven项目中报错“java不支持版本6即更高的版本 7”

错误背景 当Maven项目编译或运行时出现错误提示 Java不支持版本6即更高的版本7&#xff0c;通常是由于项目配置的JDK版本与当前环境或编译器设置不一致导致的。例如&#xff1a; 项目配置的Java版本为6或7&#xff0c;但实际使用的是JDK 17。Maven或IDE的编译器未正确指定目标…...

MySQL--索引入门

MySQL官方对索引的定义为&#xff1a;索引&#xff08;Index&#xff09;是帮助MySQL高效获取数据的数据结构。 Mysql在存储数据之外&#xff0c;数据库系统各种还维护着满足特定查找算法的数据结构&#xff0c;这些数据结构以某种引用&#xff08;指向&#xff09;表中的数据…...

【网络原理】深入理解HTTPS协议

本篇博客给大家带来的是网络原理的知识点, 由于时间有限, 分三天来写, 本篇为线程第三篇,也是最后一篇. &#x1f40e;文章专栏: JavaEE初阶 &#x1f680;若有问题 评论区见 ❤ 欢迎大家点赞 评论 收藏 分享 如果你不知道分享给谁,那就分享给薯条. 你们的支持是我不断创作的动…...

利用Elixir中的原子特性 + 错误消息泄露 -- Atom Bomb

题目信息: This new atom bomb early warning system is quite strange… 题目使用 elixir 语言 一开始,我们会访问 /page.html <!DOCTYPE html> <!-- 设定文档语言为英语 --> <html lang"en"> <head><!-- 设定字符编码为UTF-8 --><…...

机器人--STM32

STM32启动模式 1,从主闪存存储启动器启动(默认) 2,从系统存储启动器启动 下载程序时需要使用的启动方式。 3&#xff0c;从内置的SRAM启动...

LVGL -文本显示 英文、中文

1 文本 在 LVGL 中,文本控件(Label)是一种基本的 UI 组件,用于显示文本信息。文本控件可以用于各种场景,如显示状态信息、提示消息、标题等。在图形用户界面(GUI)开发中,文本是传达信息和指导用户的重要组成部分。为了有效地展示文本,以下是与文本相关的几个关键方面…...

Java面试资源获取

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 **1. GitHub开源项目****2. 技术博客与社区*…...

探索 Spring AI 的 ChatClient API:构建智能对话应用的利器

探索 Spring AI 的 ChatClient API&#xff1a;构建智能对话应用的利器 前言 在当今人工智能蓬勃发展的时代&#xff0c;智能对话系统成为了众多应用的核心组成部分。无论是客服机器人、智能助手还是聊天应用&#xff0c;都离不开高效、灵活的对话处理能力。Spring AI 作为 S…...

Java大师成长计划之第11天:Java Memory Model与Volatile关键字

&#x1f4e2; 友情提示&#xff1a; 本文由银河易创AI&#xff08;https://ai.eaigx.com&#xff09;平台gpt-4o-mini模型辅助创作完成&#xff0c;旨在提供灵感参考与技术分享&#xff0c;文中关键数据、代码与结论建议通过官方渠道验证。 在多线程编程中&#xff0c;线程的执…...

java学习之数据结构:一、数组

主要是对数组所有的东西进行总结&#xff0c;整理 适合小白~ 目录 1.什么是数组 1.1数组定义 1.2数组创建 1&#xff09;静态创建 2&#xff09;动态创建 1.3数组遍历 1&#xff09;for和while遍历 2&#xff09;foreach遍历 2.数组越界问题及解决 2.1数组越界问题 2…...

Oracle OCP认证考试考点详解083系列04

题记&#xff1a; 本系列主要讲解Oracle OCP认证考试考点&#xff08;题目&#xff09;&#xff0c;适用于19C/21C,跟着学OCP考试必过。 16. 第16题&#xff1a; 题目 解析及答案&#xff1a; 关于使用恢复管理器&#xff08;RMAN&#xff09;恢复表&#xff0c;以下哪三项是…...

MARM:推荐系统中的记忆增强突破

文章目录 1. 背景1.1 模型规模与推荐系统的挑战1.2 缓存技术在推荐系统中的潜力1.3 推荐系统中的数据与计算需求1.4 复杂度对比1.5 MARM模型的创新性 2. 方法2.1 流程2.1.1 序列生成器2.1.2 外部缓存查找2.1.3 多目标注意力机制2.1.4 发结果到缓存 **2.2 MARM与SIM**2.2.1 SIM的…...

INP指标

什么是INP&#xff08;Interaction to Next Paint&#xff09; 参考网站&#xff1a;webVital-INP文档 定义与核心目标 INP 是一项稳定的 Core Web Vitals 指标&#xff0c;通过统计用户访问期间所有符合条件的互动约定时间&#xff0c;评估网页对用户操作的总体响应能力。最…...

Flink 的状态机制

在实时流处理领域&#xff0c;状态管理是构建复杂业务逻辑的核心能力。Apache Flink 通过统一的状态抽象和高效的容错机制&#xff0c;为开发者提供了从毫秒级窗口聚合到 TB 级历史数据关联的全场景支持。本文将深入剖析 Flink 状态机制的底层原理&#xff0c;结合实际案例展示…...

【PostgreSQL数据分析实战:从数据清洗到可视化全流程】1.1 数据库核心概念与PostgreSQL技术优势

&#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章大纲 深度解析PostgreSQL核心架构与技术优势&#xff1a;从数据库原理到实战场景1.1 数据库核心概念与PostgreSQL技术优势1.1.1 关系型数据库核心架构解析1.1.1.1 数据库系统的底…...

linux下,ollama会把模型文件保存在哪里?

文章目录 运行ollama,有两种形式,估计得分开讨论首先是使用自动启动的ollama:先跑个“小一点的大模型”但是现在模型文件存在哪儿呢?运行ollama,有两种形式,估计得分开讨论 我们用两种方式,来运行ollama。 首先是使用自动启动的ollama: ps -aux | grep ollama系统自…...

EMMC存储性能测试方法

记于 2022 年 9 月 15 日 EMMC存储性能测试方法 - Wesley’s Blog 参考Android-emmc性能测试 | 一叶知秋进行实践操作 dd 命令 页面缓存 为了测试 emmc 的真实读写性能&#xff0c;我们需要先把页面缓存给清理&#xff1a; echo 1 > /proc/sys/vm/drop_caches console:…...

19. LangChain安全与伦理:如何避免模型“幻觉“与数据泄露?

引言&#xff1a;当AI成为企业"数字员工"时的责任边界 2025年某金融机构因AI客服泄露用户信用卡信息被罚款2300万美元。本文将基于LangChain的安全架构与Deepseek-R1的合规实践&#xff0c;揭示如何构建既强大又安全的AI系统。 一、AI安全风险矩阵 1.1 2025年最新威…...

5月3日日记

上午睡到自然醒&#xff08;其实六点多被我爸叫起来抢火车票&#xff0c;发现明天中午的软卧候补上了&#xff0c;挺好的&#xff09;然后继续睡到快10点。 中午吃的什么来着&#xff0c;好像是西红柿炒鸡蛋和藜麦饭&#xff0c;有个鱼不是很想吃就没吃 中午打了两把吃鸡&…...

C++类_构造函数

在 C11 里&#xff0c;类的构造函数有多种类型&#xff0c;下面为你详细介绍各类构造函数并给出示例代码。 1. 默认构造函数 默认构造函数是没有参数的构造函数&#xff0c;要是没有为类定义任何构造函数&#xff0c;编译器会自动生成一个默认构造函数。 2. 带参数的构造函数…...

【React】Hooks useReducer 详解,让状态管理更可预测、更高效

1.背景 useReducer是React提供的一个高级Hook,没有它我们也可以正常开发&#xff0c;但是useReducer可以使我们的代码具有更好的可读性&#xff0c;可维护性。 useReducer 跟 useState 一样的都是帮我们管理组件的状态的&#xff0c;但是呢与useState不同的是 useReducer 是集…...

Runnable组件重试机制降低程序错误率

一、LangChain 重试机制深度解析 当构建生产级AI应用时&#xff0c;with_retry() 机制可有效提升系统容错性&#xff0c;典型应用场景包括&#xff1a; API调用频率限制时的自动恢复模型服务临时不可用的故障转移网络波动导致的瞬时异常处理 参数详解与配置策略 1. 参数配置…...

纹理过滤方式和纹理包裹方式

纹理过滤方式 纹理过滤方式有临近过滤&#xff08;Nearest&#xff09;和双线性插值过滤&#xff08;Linear&#xff09;&#xff0c;什么时候用什么过滤方式其实看个人选择&#xff0c;区别就是临近过滤是当需要的像素大于图片像素时候&#xff0c;一些像素点需要复用与他相近…...

55.[前端开发-前端工程化]Day02-包管理工具npm等

包管理工具详解 npm、yarn、cnpm、npx、pnpm 1 npm包管理工具 代码共享方案 包管理工具npm 2 package配置文件 npm的配置文件 方式二 常见的配置文件 常见的属性 常见的属性 常见的属性 依赖的版本管理 常见属性 npm install 命令 项目安装 3 npm install原理 npm instal…...

Maven安装配置以及Idea中的配置教程

一、下载Maven 我使用的是3.9.9的版本&#xff1a; 下载地址&#xff1a;Download Apache Maven – Maven 二、安装 将下载好的Maven压缩包解压到一个路径不包含中文的文件夹&#xff1a; 三、配置环境变量 以win11系统为例&#xff1a; 1.鼠标右键此电脑->属性->…...

【JavaScript】性能优化:打造高效前端应用

文章目录 一、执行效率优化(关键路径优化)1.1 算法时间复杂度控制1.2 Web Workers多线程计算二、内存管理(避免内存泄漏)2.1 定时器清理2.2 DOM引用释放三、DOM操作优化(渲染性能)3.1 批量DOM更新3.2 读写分离策略四、网络传输优化(加载性能)4.1 代码分割(Dynamic Imp…...

【C语言练习】018. 定义和初始化结构体

018. 定义和初始化结构体 018. 定义和初始化结构体1. 定义结构体示例1:定义一个简单的结构体输出结果2. 初始化结构体示例2:在声明时初始化结构体输出结果示例3:使用指定初始化器初始化结构体(C99及以上标准支持)输出结果3. 结构体数组示例4:定义和初始化结构体数组输出结…...

Three.js支持模型格式区别、建议

在 Three.js 中,3D 模型的种类和格式非常多样,每种格式都有其适用场景和优缺点。以下是常见的 Three.js 支持的模型格式、它们的区别、使用建议及推荐。 在这里推荐免费的blender工具,免费、占用空间不大,而且好用,前端打开模型时使用不错,或者有自己想做的模型也可以用它…...

JavaScript基础-流程控制概念

在JavaScript编程中&#xff0c;掌握如何控制程序的执行流程是编写功能强大、逻辑清晰代码的关键。流程控制语句允许我们根据不同的条件执行不同的代码块&#xff0c;或者重复执行某些操作&#xff0c;从而实现复杂的功能逻辑。本文将详细介绍JavaScript中的几种主要流程控制结…...

PowerBI企业运营分析——多维度日期指标分析

PowerBI企业运营分析——多维度日期指标分析 欢迎来到Powerbi小课堂&#xff0c;在竞争激烈的市场环境中&#xff0c;企业运营分析平台成为提升竞争力的核心工具。 通过整合多源数据、实时监控关键指标&#xff0c;该平台能够精准分析业务表现&#xff0c;快速识别问题与机会…...

施磊老师rpc(三)

文章目录 mprpc框架项目动态库编译框架生成动态库框架初始化函数-文件读取1. 为什么要传入 argc, argv2. 读取参数逻辑3. 配置文件设计 init部分实现 mprpc配置文件加载(一)配置文件加载类成员变量主要方法**src/include/mprpcconfig.h** 配置文件**bin/test.conf** 实现配置文…...

k8s 探针

Kubernetes 中的探针&#xff08;Probes&#xff09;用于检测容器的健康状态或就绪状态&#xff0c;确保应用在运行时的可靠性。Kubernetes 提供三种探针类型&#xff0c;它们的核心区别在于用途和失败后的处理逻辑。以下是它们的详细说明和对比&#xff1a; 1. 启动探针&…...

MIT6.S081-lab8

MIT6.S081-lab8 1. Large files 从 lecture 我们可以知道&#xff0c;我们目前的单个文件的最大大小很小&#xff0c;这是因为我们能够索引的索引块范围很小&#xff0c;实际上&#xff0c;目前的索引只有直接索引和一级索引&#xff0c;而这个实验就是需要我们去实现二级索引…...

【RabbitMQ】 RabbitMQ快速上手

文章目录 一、RabbitMQ 核心概念1.1 Producer和Consumer2.2 Connection和Channel2.3 Virtual host2.4 Queue2.5 Exchange2.6 RabbitMQ工作流程 二、AMQP协议三 、web界面操作4.1 用户相关操作4.2 虚拟主机相关操作 四、RabbitMQ快速入门4.1 引入依赖4.2 编写生产者代码4.2.1 创…...

使用Rust + WebAssembly提升前端渲染性能:从原理到落地

一、问题背景&#xff1a;为什么选择WebAssembly&#xff1f; 最近在开发数据可视化大屏项目时&#xff0c;我们遇到了一个棘手的问题&#xff1a;前端需要实时渲染10万数据点的动态散点图&#xff0c;使用纯JavaScript Canvas方案在低端设备上帧率不足15FPS。经过性能分析&a…...

【quantity】9 长度单位模块(length.rs)

代码是用Rust语言定义的一组长度单位类型&#xff0c;利用了泛型和类型别名来创建带不同SI前缀的长度量。下面是详细解释&#xff1a; 基础结构&#xff1a; 使用了Quantity<V, P, Meter>作为基础类型&#xff0c;表示一个带有值类型V、前缀P和单位Meter的量。 Meter是…...

网络通信领域的基础或流行协议

一、TCP(传输控制协议) 1. 宏观介绍 TCP:全称“Transmission Control Protocol”——传输控制协议,是互联网最基础的传输协议之一。传输层协议,提供面向连接、可靠的字节流传输服务。它通过三次握手建立连接、四次挥手断开连接,确保数据有序、完整地传输作用:让两个设备…...

STM32——GPIO

1、GPIO简介 GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输出口 可配置为8种输入输出模式 引脚电平&#xff1a;0V~3.3V&#xff0c;部分引脚可容忍5V 输出模式下可控制端口输出高低电平&#xff0c;用以驱动LED、控制蜂鸣器、模拟通信协议输出时序等 …...

AE模板 300个故障干扰损坏字幕条标题动画视频转场预设

这个AE模板提供了300个故障干扰损坏字幕条标题动画视频转场预设&#xff0c;让您的视频具有炫酷的故障效果。无论是预告片、宣传片还是其他类型的视频&#xff0c;这个模板都能带给您令人惊叹的故障运动标题效果。该模板无需任何外置插件或脚本&#xff0c;只需一键点击即可应用…...

2025-2026 XCPC

基本信息 本赛季由 jr-zlw \texttt{\color{#AA00AA}{jr-zlw}} jr-zlw, Skyzhou \texttt{\color{#03A89E} Skyzhou} Skyzhou 和 sunchaoyi \texttt{\color{#0000FF}sunchaoyi} sunchaoyi 组队&#xff0c;全靠大佬带飞~。 训练记录 2025.05.02 The 2023 Guangdong Provinci…...

list类的详细讲解

【本节目标】 1. list的介绍及使用 2. list的深度剖析及模拟实现 3. list与vector的对比 1. list的介绍及使用 1.1 list的介绍 1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器&#xff0c;并且该容器可以前后双向迭代。 2. list 的底层是双向链表结构&a…...

中小企业MES系统数据库设计

版本&#xff1a;V1.0 日期&#xff1a;2025年5月2日 一、数据库架构概览 1.1 数据库选型 数据类型数据库类型技术选型用途时序数据&#xff08;传感器读数&#xff09;时序数据库TimescaleDB存储设备实时监控数据结构化业务数据关系型数据库PostgreSQL工单、质量、设备等核心…...

wfp CommandParameter 详细解说

WPF 中的 CommandParameter 是命令模型中的关键属性,用于向命令的执行逻辑传递动态参数。以下是其主要特性和应用场景的详细解析: 1. ‌基本概念与用法‌ ‌数据传递机制‌ CommandParameter 通常与 Command 属性配合使用,允许在 XAML 中静态定义参数或在绑定中动态传递值。…...

正弦波、方波、三角波和锯齿波信号发生器——Multisim电路仿真

目录 Multisim使用教程说明链接 一、正弦波信号发生电路 1.1正弦波发生电路 电路组成 工作原理 振荡频率 1.2 正弦波发生电路仿真分析 工程文件链接 二、方波信号发生电路 2.1 方波发生电路可调频率 工作原理 详细过程 2.2 方波发生电路可调频率/可调占空比 调节占空比 方波产生…...

Java语言概述

Java语言概述 什么是程序&#xff1f; ​ 程序是计算机执行某些操作或解决某个问题而编写的一系列有序指令单集合。 ​ 举例&#xff1a; ​ 计算11&#xff0c;并把结果写在黑板上 ​ 计算11&#xff0c;并把结果显示在屏幕上&#xff08;按编程语言规定的语句&#xff0…...

截图软件、画图软件、左右分屏插件、快捷键

截图软件 画图软件 画图时候按字母可以改变颜色&#xff1a;红色r,蓝色b,绿色g,粉色p,橙色o 左右分屏&#xff1a; 快捷键 1.打开文件或文件夹&#xff1a; CtrlP&#xff1a;快速打开文件。CtrlR&#xff1a;快速打开文件或文件夹。 2.文件操作&#xff1a; CtrlN&…...

Linux 信号

一、生活中的信号 1.1、生活中的信号从产生到结束过程 例&#xff1a; ①、外卖电话响了&#xff08;信号产生&#xff09;-> 我接了电话并告诉外卖员说先放到楼下的架子上&#xff08;识别到这个信号&#xff0c;并记住&#xff0c;保存到我的脑海里面&#xff09; ->…...