当前位置: 首页 > news >正文

国产紫光同创FPGA视频采集转SDI编码输出,基于HSSTHP高速接口,提供2套工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
    • 紫光同创FPGA相关方案推荐
    • 本博已有的 SDI 编解码方案
    • 本方案在Xilinx--Artix7系列FPGA上的应用
    • 本方案在Xilinx--Kintex系列FPGA上的应用
    • 本方案在Xilinx--Zynq系列FPGA上的应用
    • 本方案在Xilinx--UltraScale系列FPGA上的应用
  • 3、详细设计方案
    • 设计原理框图
    • 输入Sensor之-->OV5640摄像头
    • 输入Sensor之-->芯片解码的HDMI
    • 图像缓存架构
    • 视频读取控制
    • RGB转BT1120
    • 紫光HSSTHP 高速接口
    • 紫光12G-SDI IP核
    • Gv8500 驱动器
    • SDI转HDMI盒子
    • 工程源码架构
  • 4、PDS工程源码1详解-->OV5640输入转HD-SDI输出
  • 5、PDS工程源码2详解-->HDMI输入转3G-SDI输出
  • 6、上板调试验证
    • 准备工作
    • 紫光同创FPGA SDI视频编码输出演示
  • 7、福利:工程代码的获取

国产紫光同创FPGA视频采集转SDI编码输出,基于HSSTHP高速接口,提供2套工程源码和技术支持

1、前言

国产FPGA现状:

“苟利国家生死以,岂因祸福避趋之!”大洋彼岸的我优秀地下档员,敏锐地洞察到祖国的短板在于先进制程半导体的制造领域,于是本着为中华民族伟大复兴的中国梦贡献绵薄之力的初心,懂先生站在高略高度和长远角度谋划,宁愿背当代一世之骂名也要为祖国千秋万世谋,2018年7月,懂先生正式打响毛衣战,随后又使出恰勃纸战术,旨在为祖国先进制程半导体领域做出自主可控的战略推动;2019年初我刚出道时,还是Xilinx遥遥领先的时代(现在貌似也是),那时的国产FPGA还处于黑铁段位;然而才短短7年,如今的国产FPGA属于百家争鸣、百花齐放、八仙过海、神仙打架、方兴未艾、得陇望蜀、友商都是XX的喜极而泣之局面,此情此景,不得不吟唱老人家的诗句:魏武挥鞭,东临碣石有遗篇,萧瑟秋风今又是,换了人间。。。
目前对于国产FPGA优势有以下几点:
1:性价比高,与同级别国外大厂芯片相比,价格相差几倍甚至十几倍;
2:自主可控,国产FPGA拥有完整自主知识产权的产业链,从芯片到相关EDA工具;
3:响应迅速,FAE技术支持比较到位,及时解决开发过程中遇到的问题,毕竟中文数据手册;
4:采购方便,产业链自主可控,采购便捷;

FPGA实现SDI视频编解码现状:

目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,比如Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,或者紫光同创系列FPGA的HSSTHP高速接口资源实现解串;优点是合理利用了FPGA资源,高速接口资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。本设计采用紫光同创Titan2系列FPGA的HSSTHP高速接口资源实现SDI视频解串和解码;

工程概述

本设计基于紫光同创的Titan2系列FPGA开发板实现视频采集转SDI编码输出;视频输入源有多种,一种是板载的HDMI输入接口,另一种是传统摄像头,包括OV7725、OV5640和AR0135;如果你的FPGA开发板没有视频输入接口,或者你的手里没有摄像头时,可以使用FPGA逻辑实现的动态彩条模拟输入视频,代码里通过parametr参数选择视频源,默认不使用动态彩条;FPGA首先对摄像头进行i2c初始化配置,然后采集摄像头视频;然后视频送入图像缓存架构实现视频3帧缓存功能,本设计使用DDR4作为缓存介质;然后Native视频时序控制图像缓存架构从DDR4中读取视频,并做Native视频时序同步,输出RGB888视频;然后经过RGB转BT1120模块实现视频格式转换,然后视频进入紫光同创Titan2系列FPGA特有的12G–SDI IP核,进行SDI视频编码操作并输出SDI视频,再经过紫光同创Titan2系列FPGA内部的HSSTHP高速资源,实现并行数据到高速串行的转换,本博称之为串化,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器即可;本博客提供2套工程源码,具体如下:
在这里插入图片描述
现对上述2套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为PG2T390H-6FFBG900;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入图像缓存架构实现视频3帧缓存功能,本设计使用DDR4作为缓存介质;然后Native视频时序控制图像缓存架构从DDR4中读取视频,并做Native视频时序同步,输出RGB888视频;然后视频进入紫光同创Titan2系列FPGA特有的12G–SDI IP核,进行SDI视频编码操作并输出SDI视频,再经过紫光同创Titan2系列FPGA内部的HSSTHP高速资源,实现并行数据到高速串行的转换,本博称之为串化,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,输出分辨率为1280x720@60Hz,这是HD-SDI视频标准;最后使用SDI转HDMI盒子连接到HDMI显示器显示;该工程适用于紫光同创Titan2系列FPGA实现OV5640转SDI场景;

工程源码2

开发板FPGA型号为PG2T390H-6FFBG900;输入视频为HDMI视频,用笔记本电脑模拟,笔记本电脑通过HDMI线连接FPGA开发板的HDMI输入接口,板载的IT6802芯片实现HDMI视频解码,FPGA使用纯Verilog实现的i2c总线对IT6802进行初始化配置,分辨率配置为1920x1080@60Hz,输出RGB888视频给FPGA;然后视频送入图像缓存架构实现视频3帧缓存功能,本设计使用DDR4作为缓存介质;然后Native视频时序控制图像缓存架构从DDR4中读取视频,并做Native视频时序同步,输出RGB888视频;然后视频进入紫光同创Titan2系列FPGA特有的12G–SDI IP核,进行SDI视频编码操作并输出SDI视频,再经过紫光同创Titan2系列FPGA内部的HSSTHP高速资源,实现并行数据到高速串行的转换,本博称之为串化,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,输出分辨率为1920x1080@60Hz,这是3G-SDI视频标准;最后使用SDI转HDMI盒子连接到HDMI显示器显示;该工程适用于紫光同创Titan2系列FPGA实现HDMI转SDI场景;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目

其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以本博文置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。以下是博客地址:
点击直接前往

紫光同创FPGA相关方案推荐

鉴于国产FPGA的优异表现和市场需求,我专门开设了一个人紫光同创FPGA专栏,里面收录了基于紫光同创FPGA的图像处理、UDP网络通信、GT高速接口、PCIE等博客,感兴趣的可以去看看,博客地址:点击直接前往

本博已有的 SDI 编解码方案

我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往

本方案在Xilinx–Artix7系列FPGA上的应用

本方案在Xilinx–Artix7系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案在Xilinx–Kintex系列FPGA上的应用

本方案在Xilinx–Kintex系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案在Xilinx–Zynq系列FPGA上的应用

本方案在Xilinx–Zynq系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案在Xilinx–UltraScale系列FPGA上的应用

本方案在Xilinx–UltraScale系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

3、详细设计方案

设计原理框图

设计原理框图如下:
在这里插入图片描述

输入Sensor之–>OV5640摄像头

输入Sensor是本工程的输入设备,其一为OV5640摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出OV5640摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;

OV5640摄像头需要i2c初始化配置,本设计配置为1280x720@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV5640摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV5640摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>芯片解码的HDMI

输入Sensor是本工程的输入设备,其二为板载的HDMI输入接口;输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;HDMI解码方案为芯片解码,使用IT6802,可将输入的HDMI视频解码为RGB888视频;FPGA纯verilog实现的i2c配置模块完成对IT6802芯片的配置,分辨率配置为1920x1080@60Hz;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出HDMI接口采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
整个模块代码架构如下:
在这里插入图片描述

图像缓存架构

此模块为点对点视频接收端工程所独有;图像缓存架构实现的功能是将输入视频缓存到板载DDR4中再读出送后续模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了紫光官方的HMIC_S IP核作为DDR4控制器,所以图像缓存架构就是实现用户数据到HMIC_S的桥接作用;架构如下:
在这里插入图片描述
图像缓存架构由视频缓存帧更新模块+写视频控制逻辑+读视频控制逻辑+AXI4-FULL-Master总线模块组成;AXI4-FULL-Master总线模块实际上就是一个AXI4-FULL总线主设备,与HMIC_S IP核对接,HMIC_S IP核配置为AXI4-FULL接口;写视频控制逻辑、读视频控制逻辑实际上就是一个视频读写状态机,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;写视频控制逻辑每次写入一次突发传输的视频数据,记作Y,即每次向DDR4中写入Y个像素,写M×N÷Y次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以忽略AXI4内部代码,以简单地像使用FIFO那样操作AXI4总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为4帧缓存;图像缓存模块代码架构如下:
在这里插入图片描述
DDR4控制器IP安装包以附带资料包中,如下:
在这里插入图片描述

视频读取控制

图像缓存架构使用VGA时序模块完成视频读取控制,VGA时序模块负责产生VGA时序,他有两个作用,一是控制图像缓存架构从DDR4中读出缓存的视频,二是将同步后的VGA视频送入下一级模块,在HDMI输出方式下VGA时序模块的像素时钟由用户提供;在SDI输出方式下VGA时序模块的像素时钟由紫光同创Titan2系列FPGA特有的12G-SDI IP核的发送用户时钟提供,在不同的SDI模式下像素时钟不同,比如在3G-SDI模式下像素时钟为148.5M,在HD-SDI的720P@60Hz模式下像素时钟为74.25M;SDI输出方式下的VGA时序模块代码架构如下:
在这里插入图片描述

RGB转BT1120

在SDI输出方式下需要使用该模块;RGB转BT1200模块的作用是将用户侧的RGB视频转换为BT1200视频输出给SMPTE SD/HD/3G SDI IP核;RGB转BT1120模块由RGB888转YUV444模块、YUV444转YUV422模块、SDI视频编码模块、数据嵌入模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

紫光HSSTHP 高速接口

本设计使用紫光同创Titan2系列FPGA特有的HSSTHP高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,HSSTHP起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,HSSTHP起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;
!!!注意
!!!注意
HSSTHP 高速接口的解串与串化功能集成在了紫光同创官方提供的12G-SDI IP核内部,所以这部分没有独立的代码例化;

紫光12G-SDI IP核

本设计使用紫光同创Titan2系列FPGA特有的12G-SDI IP核实现2G SDI视频编解码,该IP由紫光同创官方提供,集成度很高,具体性能如下:详情可参考《UG052007_Titan2_12GSDI_IP》;
SDI 接收端性能表现如下:
1、支持自动检测接收数据的 SDI 速率模式;
2、支持 SD-SDI、HD-SDI、3G-SDI、6G-SDI 和 12G-SDI 接收模式动态切换;
3、自动检测视频传输格式;
4、检测和捕捉 SMPTE 352 (Payload ID)包;
5、HD-SDI、3G-SDI、6G-SDI 和 12G-SDI 模式下,检查 CRC 错误;
6、SD-SDI 模式下,可选检查 EDH (SMPTE 165)包错误;
7、能够容忍最大±200ppm 频偏。
SDI 发送端性能表现如下:
1、支持 SD-SDI、HD-SDI、3G-SDI、6G-SDI 和 12G-SDI 发送模式动态切换;
2、HD-SDI、3G-SDI、6G-SDI 和 12G-SDI 模式下,支持 1 倍速率或者 1/1.001 倍速率 ,但不支持相互动态切换;
3、支持生成和插入 SMPTE 352 (Payload ID)包;
4、HD-SDI、3G-SDI、6G-SDI 和 12G-SDI 模式下,支持生成和插入 CRC 和 Line Numbers (LN);
5、SD-SDI 模式下,可选生成和插入 EDH (SMPTE 165)包。

12G-SDI IP安装包以附带资料包中,如下:
在这里插入图片描述
12G-SDI IP核使用配置十分简单,PDS的UI界面如下:
在这里插入图片描述
基于紫光同创FPGA 12G-SDI IP核的SDI视频编解码代码架构如下:
在这里插入图片描述

Gv8500 驱动器

Gv8500芯片实现差分转单端和增强驱动的功能,这里选用Gv8500是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8500驱动器原理图如下:
在这里插入图片描述

SDI转HDMI盒子

在SDI输出方式下需要使用到SDI转HDMI盒子,因为我手里的显示器没有SDI接口,只有HDMI接口,为了显示SDI视频,只能这么做,当然,如果你的显示器有SDI接口,则可直接连接显示,我的SDI转HDMI盒子在某宝购买,不到100块;

工程源码架构

以工程源码1为例,工程源码架构如下,其他工程与之类似:
在这里插入图片描述

4、PDS工程源码1详解–>OV5640输入转HD-SDI输出

开发板FPGA型号:紫光同创–PG2T390H-6FFBG900;;
开发环境:Pango Design Suite 2021.1
输入:OV5640摄像头或FPGA内部动态彩条,分辨率1280x720@30Hz;
输出:HD-SDI,分辨率1280x720@60Hz;
图像缓存方案:纯Verilog图像缓存,4帧缓存,DDR4颗粒;
SDI视频解串方案:紫光-HSSTHP高速接口解串;
SDI视频解码方案:紫光-12G-SDI解码;
工程说明:全国产FPGA实现OV5640转HD-SDI输出方案;
工程作用:此工程目的是让读者掌握紫光同创FPGA视频采集转SDI编码输出的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、PDS工程源码2详解–>HDMI输入转3G-SDI输出

开发板FPGA型号:紫光同创–PG2T390H-6FFBG900;;
开发环境:Pango Design Suite 2021.1
输入:HDMI或者FPGA内部动态彩条,IT6802芯片解码方案,分辨率1920x1080@60Hz,笔记本电脑模拟输入源;
输出:3G-SDI,分辨率1920x1080@60Hz;
图像缓存方案:纯Verilog图像缓存,4帧缓存,DDR4颗粒;
SDI视频解串方案:紫光-HSSTHP高速接口解串;
SDI视频解码方案:紫光-12G-SDI解码;
工程说明:全国产FPGA实现HDMI转3G-SDI输出方案;
工程作用:此工程目的是让读者掌握紫光同创FPGA视频采集转SDI编码输出的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、上板调试验证

准备工作

需要准备的器材如下:
FPGA开发板;
SDI摄像头或HDMI转SDI盒子;
SDI转HDMI盒子;
HDMI显示器;
我的开发板了连接如下:
在这里插入图片描述

紫光同创FPGA SDI视频编码输出演示

紫光同创FPGA SDI视频编码输出演示如下:

紫光-SDI编码输出

7、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

相关文章:

国产紫光同创FPGA视频采集转SDI编码输出,基于HSSTHP高速接口,提供2套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目紫光同创FPGA相关方案推荐本博已有的 SDI 编解码方案本方案在Xilinx--Artix7系列FPGA上的应用本方案在Xilinx--Kintex系列FPGA上的应用本方案在Xilinx--Zynq系列FPGA上…...

最小生成树-prim、kruskal算法

目录 prim算法 kruskal算法 题目练习 (1)AcWing 858. Prim算法求最小生成树 - AcWing (2)859. Kruskal算法求最小生成树 - AcWing题库​编辑 学习之前建议温习一下迪杰斯特拉算法和并查集~ 先简单认识下最小生成树&#xff1a…...

【硬核干货】JetBrains AI Assistant 干货笔记

快进来抄作业,小编呕心沥血整理的 JetBrains AI Assistant 超干货笔记! 原文链接:【硬核干货】JetBrains AI Assistant 干货笔记 关于晓数神州 晓数神州坚持以“客户为中心”的宗旨,为客户提供专业的解决方案和技术服务&#xff…...

强化学习核心原理及数学框架

1. 定义与核心思想 强化学习(Reinforcement Learning, RL)是一种通过智能体(Agent)与环境(Environment)的持续交互来学习最优决策策略的机器学习范式。其核心特征为: ​​试错学习​​&#x…...

C# 综合示例 库存管理系统4 classMod类

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的 在《库存管理系统》中使用classMod类来保存全局变量。 变量定义和含义,请详见下面的源代码: public class classMod { //数据库路径...

[C] 第6章 C51函数

文章目录 C51函数函数概述从函数定义角度分类从函数有无返回值分类从函数有无参数 函数定义的一般形式C51无参函数的一般形式C51有参函数的一般形式 函数的形式参数和实际参数形式参数实际参数函数的返回值一般形式为: 函数的形参和实参的特点 函数的调用函数的调用…...

docker 配置代理

docker 配置代理有 2 中方法 1.Daemon configuration 直接在 /etc/docker/daemon.json 文件中配置 {"proxies": {"http-proxy": "http://proxy.example.com:3128","https-proxy": "https://proxy.example.com:3129",&quo…...

Redis 深度解析:从核心原理到生产实践

Redis 深度解析:从核心原理到生产实践 一、Redis 核心定位与数据结构 1. 核心能力矩阵深度解析 Redis 作为高性能内存数据库,核心能力覆盖缓存、数据存储、消息中间件等场景,其设计哲学围绕速度优先、内存高效、功能丰富展开: …...

从零搭建高可用分布式限流组件:设计模式与Redis令牌桶实践

一、需求背景与设计目标 在分布式系统中,面对突发流量时需要一种精准可控的流量控制手段。我们的组件需要具备: 多维度限流(用户/IP/服务节点/自定义表达式)分布式环境下精准控制开箱即用的Spring Boot Starter集成高扩展性的架…...

基于霍尔效应传感器的 BLDC 电机梯形控制方案详解

基于霍尔效应传感器的 BLDC 电机梯形控制方案解读 使用霍尔效应传感器的无刷直流(BLDC)电机梯形控制 一、系统核心架构与技术优势 (一)BLDC 电机与霍尔传感器控制原理 BLDC 电机作为永磁同步电机的一种,其核心特征是转子反电动势为梯形波,定子电流为 120 电角度宽度的矩…...

Pikachu靶场-File Inclusion

文件包含漏洞(File Inclusion Vulnerability)是Web应用程序中的一种常见安全漏洞,通常由于开发者未对用户输入进行严格过滤,导致攻击者能够包含并执行恶意文件。这种漏洞主要分为两种类型: 1. 漏洞类型 本地文件包含&a…...

如何模拟黑客攻击(Red Teaming)以测试服务器安全性

模拟黑客攻击(Red Teaming)是评估服务器安全性的有效方法,但需严格遵循**合法授权**和**道德准则**。以下是专业且安全的操作流程: --- ### **1. 前期准备** - **法律授权** - 获得目标系统的**书面授权**,明确测…...

分页查询优惠券

文章目录 概要整体架构流程技术细节小结 概要 接口分析 一个典型的带过滤条件的分页查询,非常简单。按照Restful风格设计即可,我们关注的点有两个: 请求参数 返回值格式 请求参数包含两部分,一个是分页参数,另一…...

QTcpSocket 和 QUdpSocket 来实现基于 TCP 和 UDP 的网络通信

在 Qt 中,您可以通过 QTcpSocket 和 QUdpSocket 来实现基于 TCP 和 UDP 的网络通信。以下是如何使用 Qt 实现这两种通信方式的简要示例。 1. TCP 网络通信 TCP 是面向连接的协议,确保数据的可靠传输。下面是一个简单的 TCP 客户端和服务器示例。 TCP …...

从岗位依附到能力生态:AI革命下“什么叫就业”的重构与价值

在人工智能(AI)技术深刻重塑社会生产关系的当下,“就业”这一概念正经历着从“职业绑定”到“能力变现”的范式转移。本文将从传统就业观的解构、AI赋能艺术教育的价值逻辑、以及未来就业形态的进化方向三个维度,探讨技术驱动下就业的本质变革,并揭示AI技术如何通过教育创…...

2025上海车展 | 移远通信全栈车载智能解决方案重磅亮相,重构“全域智能”出行新范式

2025年4月23日至5月2日,第二十一届上海国际汽车工业展览会在国家会展中心(上海)盛大启幕。作为车载智能解决方案领域的领军企业,移远通信以“全域智能 驭见未来”为主题,携丰富的车载解决方案及客户终端惊艳亮相8.2馆8…...

LVGL在VScode的WSL2中仿真

目录 一、前言 二、开始部署 1.拉取github的库 2.在WSL安装一些必要的库或者包 3.开始编译 三、注意事项 一、前言 相信有不少兄弟因为苦于没有外设而无法学习LVGL,这里我提供一种WSL中仿真LVGL工程的方法。结果图如下: 二、开始部署 1.拉取github…...

React-组件和props

1、类组件 import React from react; class ClassApp extends React.Component {constructor(props) {super(props);this.state{};}render() {return (<div><h1>这是一个类组件</h1><p>接收父组件传过来的值&#xff1a;{this.props.name}</p>&…...

驱动开发系列53 - 一个OpenGL应用程序是如何调用到驱动厂商GL库的

一:概述 一个 OpenGL 应用程序调用 GPU 驱动的过程,主要是通过动态链接库(libGL.so)来完成的。本文从上到下梳理一下整个调用链,包含 GLVND、Mesa 或厂商驱动之间的关系。 二:调用关系 1. 首先一个 OpenGL 应用程序(比如游戏或图形渲染软件)在运行时会调用 OpenGL 提供…...

【python】一文掌握 markitdown 库的操作(用于将文件和办公文档转换为Markdown的Python工具)

更多内容请见: python3案例和总结-专栏介绍和目录 文章目录 一、markitdown概述1.1 markitdown介绍1.2 MarkItDown支持的文件1.3 为什么是Markdown?二、markitdown安装2.1 pip方式安装2.2 源码安装2.3 docker方式安装三、基本使用3.1 命令行方式3.2 可选依赖项配置3.3 插件方…...

【网络入侵检测】基于Suricata源码分析NFQ IPS模式实现

【作者主页】只道当时是寻常 【专栏介绍】Suricata入侵检测。专注网络、主机安全,欢迎关注与评论。 1. 概要 👋 本文聚焦于 Suricata 7.0.10 版本源码,深入剖析其 NFQ(Netfilter Queue)模式的实现原理。通过系统性拆解初始化阶段的配置流程、数据包监听机制的构建逻辑,以…...

驱动开发硬核特训 · Day 19:从字符设备出发,掌握 Linux 驱动的实战路径(含 gpio-leds 控制示例)

视频教程请关注 B 站&#xff1a;“嵌入式 Jerry” 一、背景说明&#xff1a;字符设备驱动的角色定位 在 Linux 内核驱动体系中&#xff0c;**字符设备驱动&#xff08;Character Device Driver&#xff09;**扮演着关键的桥梁作用&#xff0c;它直接向用户空间程序提供 read/…...

项目——高并发内存池

目录 项目介绍 做的是什么 要求 内存池介绍 池化技术 内存池 解决的问题 设计定长内存池 高并发内存池整体框架设计 ThreadCache ThreadCache整体设计 哈希桶映射对齐规则 ThreadCache TLS无锁访问 CentralCache CentralCache整体设计 CentralCache结构设计 C…...

几种查看PyTorch、cuda 和 Python 版本方法

在检查 PyTorch、cuda 和 Python 版本时&#xff0c;除了直接使用 torch.__version__ 和 sys.version&#xff0c;我们还可以通过其他方式实现相同的功能 方法 1&#xff1a;直接访问属性&#xff08;原始代码&#xff09; import torch import sysprint("PyTorch Versi…...

如何实现跟踪+分割的高效协同?SiamMask中的多任务损失设计

如何实现跟踪分割的高效协同&#xff1f;SiamMask中的多任务损失设计 一、引言二、三大分支损失函数详解2.1 分类分支损失2.2 回归分支损失2.3 Mask分支损失 三、损失加权策略与系数选择3.1 常见超参数设定3.2 动态权重&#xff08;可选&#xff09; 四、训练实践&#xff1a;平…...

MODBUS转EtherNetIP边缘计算网关配置优化:Logix5000与ATV340高效数据同步与抗干扰方案

一、行业背景 智能制造是当前工业发展的趋势&#xff0c;智能工厂通过集成各种自动化设备和信息技术&#xff0c;实现生产过程的智能化、自动化和高效化。在某智能工厂中&#xff0c;存在大量采用ModbusTCP协议的设备&#xff0c;如智能传感器、变频器等&#xff0c;而工厂的主…...

从代码学习深度学习 - 图像增广 PyTorch 版

文章目录 前言一、图像增广的基本概念二、PyTorch中的图像增广实现三、数据加载与处理四、模型训练与评估五、实验设置与执行六、实验结果与分析七、讨论总结前言 在深度学习中,数据是关键。尤其是在计算机视觉任务中,高质量且丰富多样的数据对模型性能有着决定性的影响。然…...

从机械应答到智能对话:大模型为呼叫注入智慧新动能

引言 在当今竞争激烈的商业环境中&#xff0c;高效和有效的客户沟通对于企业的成功至关重要。智能外呼系统已成为企业与潜在客户和现有客户互动的重要工具。最近&#xff0c;大模型&#xff08;如大型语言模型或 LLMs&#xff09;的出现为这些系统带来了显著的提升&#xff0c…...

深入浅出 Python 协程:从异步基础到开发测试工具的实践指南

Python 的异步编程近年来越来越受欢迎&#xff0c;尤其在需要同时处理大量 I/O 请求的场景中&#xff0c;它展现了出色的性能。而协程是异步编程的核心&#xff0c;也是开发高效异步测试工具的关键技术。 这篇文章将用通俗的语言带你快速入门 Python 协程&#xff0c;结合实际…...

算法之分支定界

分支定界 分支定界概述核心思想与步骤常见变体复杂度分析案例分析1. 0-1背包问题2. 最短路径问题&#xff08;分支定界法&#xff09;3. 旅行商问题&#xff08;TSP&#xff09; 分支定界 概述 分支定界&#xff08;Branch and Bound&#xff09;是一种用于解决组合优化问题的…...

Hugging Face上面找开源的embedding模型

问题 想找一个支持中文的embedding模型&#xff08;把一段文本转化成多维度的向量&#xff09;。Hugging Face平台上面共享了很多开源模型&#xff0c;算是这年头&#xff08;2025年&#xff09;&#xff0c;大家都把自己开源模式都往上放的地方了吧。现在去这个平台上面找一个…...

docker部署Jenkins工具

环境准备 1.当前安装在Windows系统下的Docker-Desktop 下载地址&#xff1a;Docker Desktop: The #1 Containerization Tool for Developers | Docker 2.下载后进行安装并进行配置启动docker 3.创建一个空的文件夹&#xff0c;用于后面的启动时做文件路径映射 下载镜像 d…...

Pgvector+R2R搭建RAG知识库

背景 R2R是一个采用Python编写的开源AI RAG框架项目&#xff0c;与PostgreSQL技术栈集成度高&#xff0c;运行需求资源少&#xff08;主要是本人的Macbook air m1内存只有8G&#xff09;的特点&#xff0c;对部署本地私有化化AI RAG应用友好。 Resource Recommendations Whe…...

Qt本地化 - installTranslator不生效

bool QCoreApplication::installTranslator(QTranslator *translationFile)注意这里输入的是QTranslator对象指针&#xff0c;如果QTranslator是局部变量&#xff0c;一旦离开其作用域就会导致翻译失效 错误代码示范&#xff1a; void ApplyTranslator(const QString& qmf…...

精益数据分析(19/126):走出数据误区,拥抱创业愿景

精益数据分析&#xff08;19/126&#xff09;&#xff1a;走出数据误区&#xff0c;拥抱创业愿景 在创业与数据分析的探索之旅中&#xff0c;我们都渴望获取更多知识&#xff0c;少走弯路。今天&#xff0c;我依然带着和大家共同进步的想法&#xff0c;深入解读《精益数据分析…...

六、初始化与清理(Initialization cleanup)

六、初始化与清理&#xff08;Initialization & cleanup&#xff09; 本章内容主要介绍C中的 构造函数 和 析构函数 的作用与用法&#xff0c;以及默认构造、聚合初始化等相关特性 封装 和 *访问控制 *在提升库使用的便捷性方面迈出了重要的一步。在安全性方面&#xff0…...

Python - 爬虫-网页解析数据-库lxml(支持XPath)

lxml是 Python 的第三方解析库&#xff0c;完全使用 Python 语言编写&#xff0c;它对 Xpath 表达式提供了良好的支持&#xff0c;支持HTML和XML的解析&#xff0c;支持XPath解析方式&#xff0c;而且解析效率非常高 XPath&#xff0c;全称XML Path Language&#xff0c;即XML…...

单片机 + 图像处理芯片 + TFT彩屏 触摸滑动条控件

触摸滑动条控件使用说明 一、项目概述 本项目基于单片机和RA8889/RA6809图形处理芯片的TFT触摸屏滑动条控件。该控件支持水平和垂直滑动条&#xff0c;可自定义外观和行为&#xff0c;并支持回调函数进行值变化通知。 硬件平台&#xff1a;51/ARM均可(测试时使用STC8H8K64U单…...

LeetCode每日一题4.24

2799. 统计完全子数组的数目 题目 问题分析 完全子数组 的定义&#xff1a;子数组中不同元素的数目等于整个数组不同元素的数目。 子数组 是数组中的一个连续非空序列。 思路 统计整个数组的不同元素数目&#xff1a; 使用 set 来获取整个数组的不同元素数目。 遍历所有子数…...

LeetCode238_除自身以外数组的乘积

LeetCode238_除自身以外数组的乘积 标签&#xff1a;#数组 #前缀和Ⅰ. 题目Ⅱ. 示例0. 个人方法一&#xff1a;暴力循环嵌套0. 个人方法二&#xff1a;前缀和后缀分别求积 标签&#xff1a;#数组 #前缀和 Ⅰ. 题目 给你一个整数数组 nums&#xff0c;返回 数组 answer &#…...

基于 Spring Boot 的银行柜台管理系统设计与实现(源码+文档+部署讲解)

技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文…...

LeetCode 2799.统计完全子数组的数目:滑动窗口(哈希表)

【LetMeFly】2799.统计完全子数组的数目&#xff1a;滑动窗口&#xff08;哈希表&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/count-complete-subarrays-in-an-array/ 给你一个由 正 整数组成的数组 nums 。 如果数组中的某个子数组满足下述条件&am…...

卡尔曼滤波解释及示例

卡尔曼滤波的本质是用数学方法平衡预测与观测的可信度 &#xff0c;通过不断迭代逼近真实状态。其高效性和鲁棒性&#xff0c;通常在导航定位中&#xff0c;需要融合GPS、加速度计、陀螺仪、激光雷达或摄像头数据&#xff0c;来提高位置精度。简单讲&#xff0c;卡尔曼滤波就是…...

在vue项目中实现svn日志打印

在vue项目中实现svn日志打印 实现svnlog创建svn-log脚本 convert-svn-log.js配置命令 package 实现svnlog 项目工程 类似于git的conventional-changelog 创建svn-log脚本 convert-svn-log.js 在项目根目录创建convert-svn-log.js const fs require(fs-extra); const xml2j…...

使用vue2开发一个医疗预约挂号平台-前端静态网站项目练习

对于后端开发的我&#xff0c;最近一直在学习前端开发&#xff0c;除了要学习一些前端的基础知识外&#xff0c;肯定少不了一些前端项目练习&#xff0c;就通过前端的编程知识 就简单做一个医疗预约挂号前端静态页面。这个网站主要是使用了vue2 的相关技术实现的。 主要实现了这…...

Redis的过期删除策略和内存淘汰策略

&#x1f914; 过期删除和内存淘汰乍一看很像&#xff0c;都是做删除操作的&#xff0c;这么分有什么意思&#xff1f; 首先&#xff0c;设置过期时间我们很熟悉&#xff0c;过期时间到了&#xff0c;我么的键就会被删除掉&#xff0c;这就是我们常认识的过期删除&#xff0c;…...

Langchain检索YouTube字幕

创建一个简单搜索引擎&#xff0c;将用户原始问题传递该搜索系统 本文重点&#xff1a;获取保存文档——保存向量数据库——加载向量数据库 专注于youtube的字幕&#xff0c;利用youtube的公开接口&#xff0c;获取元数据 pip install youtube-transscript-api pytube 初始化 …...

服务器上安装node

1.安装 下载安装包 https://nodejs.org/en/download 解压安装包 将安装包上传到/opt/software目录下 cd /opt/software tar -xzvf node-v16.14.2-linux-x64.tar.gz 将解压的文件夹移动到安装目录(/opt/nodejs)下 mv /opt/software/node-v16.14.2-linux-x64 /opt/nodejs …...

React:什么是Hook?通俗易懂的讲讲

什么是Hook 1.Hook 是什么&#xff1f;2.React 内置的 Hook3. 自定义 Hook4. 总结 1.Hook 是什么&#xff1f; 可以理解为&#xff1a;函数组件的工具/功能插件 Hook是 React 16.8 以后提供的一种新特性&#xff0c; 让你在函数组件里“钩入”React 的功能&#xff08;比如状态…...

树莓派安装GStreamer ,opencv支持, 并在虚拟环境中使用的安装方法

首先是我在树莓派中 使用OpenCV 读取网络视频流, 如海康威视 通过rtsp协议地址读取 会发生延迟和丢包的情况 后来使用ffmpeg和OpenCV 读取视频流 丢报的问题减少了 但是长时间运行 还是会造成延迟和卡顿 最后直接卡死画面 后来试了一下GStreamer 管道流 是树莓派支持的 但是原生…...