Faster R-CNN (目标检测)
Faster R-CNN (Faster Region-based Convolutional Neural Networks)
Faster R-CNN 是一种高效的目标检测模型,它是在 R-CNN 系列(包括 R-CNN 和 Fast R-CNN)的基础上发展而来的,能够实现对图像中多个对象的检测。Faster R-CNN 引入了 Region Proposal Network (RPN),显著提升了目标检测的速度和准确性,成为现代目标检测任务中的基准方法之一。
Faster R-CNN 的工作原理
Faster R-CNN 主要由两部分组成:Region Proposal Network (RPN) 和 Fast R-CNN。这两部分网络通过共享卷积特征,使得整个检测过程非常高效。
1. Region Proposal Network (RPN)
RPN 是 Faster R-CNN 中的核心创新,它负责生成候选区域(region proposals)。传统的目标检测方法,如 R-CNN 和 Fast R-CNN,依赖于外部的选择性搜索(Selective Search)算法来提取候选区域,而 RPN 通过学习的方式直接从图像特征中自动生成这些候选区域。
- RPN 结构:
- RPN 通过滑动窗口(通常为 3x3)在特征图上生成多个候选区域。
- 每个滑动窗口会输出一组区域候选框,并计算出每个候选框的 置信度分数(对象与背景的概率)。
- 同时,它还会生成每个候选框相对于锚框的 偏移量(坐标回归),用来调整候选框的位置。
- RPN 输入输出:
- 输入:图像的卷积特征图(由 CNN 网络提取)
- 输出:一组候选区域(bounding boxes)及其对应的得分(objectness scores)。
2. Fast R-CNN
Fast R-CNN 是对传统 R-CNN 的改进,它将 RPN 生成的候选区域(Region Proposals)送入一个快速的卷积神经网络进行目标分类和边界框回归。
- Fast R-CNN 结构:
- 特征图通过 RoI Pooling(Region of Interest Pooling)层,按比例将候选框区域映射到固定大小的特征图上。
- 这些固定大小的特征图被输入到全连接层(Fully Connected Layer),用于分类和边界框回归。
- 分类任务:对每个候选区域进行物体类别分类。
- 边界框回归:细化每个候选框的边界框。
3. End-to-End Training
Faster R-CNN 使用 端到端训练(end-to-end training)方式,整个模型(包括 RPN 和 Fast R-CNN 部分)可以一起训练,通过反向传播更新权重。训练过程通过优化一个总的损失函数,结合了 RPN 的生成区域损失和 Fast R-CNN 的分类和回归损失。
Faster R-CNN 的工作流程
- 输入图像:图像通过一个卷积神经网络(如 VGG16、ResNet)提取特征图。
- RPN 网络:RPN 网络对特征图进行滑动窗口操作,生成候选区域(region proposals)。
- RoI Pooling:将生成的候选区域通过 RoI Pooling 层映射到固定大小的特征图。
- Fast R-CNN:对固定大小的特征图进行分类(识别目标类别)和回归(调整边界框位置)。
- 输出:最终得到的结果是目标类别、边界框位置和置信度分数。
Faster R-CNN 结构图
Faster R-CNN 的架构可分为两个主要部分:
- 共享卷积特征提取网络(CNN)
- Region Proposal Network (RPN)
- RoI Pooling 层
- 全连接层和分类/回归层
优势
- 高效:通过 RPN 生成候选区域,省去了传统方法(如选择性搜索)需要额外计算的步骤,大大提高了检测速度。
- 准确:通过共享卷积特征图,Faster R-CNN 可以同时进行目标检测和候选区域生成,从而减少了误差传播,提高了准确性。
- 端到端训练:整个模型可以端到端训练,不需要手动调节或额外的候选区域提取过程。
缺点
- 计算量大:尽管 RPN 改进了候选区域的生成过程,但整体的计算量和内存需求依然较高,尤其是在高分辨率图像上。
- 速度较慢:相较于后来的改进模型(如 SSD 和 YOLO),Faster R-CNN 的实时性较差,不适合需要高帧率的实时应用。
Faster R-CNN 的应用场景
Faster R-CNN 作为一个经典的目标检测方法,在许多应用中都有广泛的应用,尤其是对准确性要求较高的场景。
- 自动驾驶:检测道路上的行人、车辆、交通标志等。
- 视频监控:检测并追踪视频中的物体。
- 医学影像分析:如肿瘤检测、器官分割等。
Faster R-CNN 的改进和扩展
-
Mask R-CNN: Mask R-CNN 是在 Faster R-CNN 基础上进一步发展的模型,除了目标检测外,还增加了 语义分割(即为每个物体生成像素级的分割掩码)。这使得 Mask R-CNN 既能够进行物体检测,又能够进行语义分割,适用于更多细粒度的图像分析任务。
-
FPN (Feature Pyramid Network): FPN 是一种增强型特征提取方法,通过在多个尺度上提取特征,能够处理不同大小的物体检测任务,改善了 Faster R-CNN 在多尺度物体检测中的性能。
-
双向特征金字塔(BiFPN):这是在 FPN 基础上的进一步改进,能够在不同尺度和层次上灵活地进行特征融合,提升检测精度。
总结
Faster R-CNN 是一个经典的目标检测算法,它通过引入 Region Proposal Network (RPN) 使得目标检测变得更加高效。尽管它仍然面临计算资源和实时性问题,但其在准确性上的表现仍然是非常优秀的,并且成为了后续许多检测算法(如 Mask R-CNN、YOLO 等)的基础。
相关文章:
Faster R-CNN (目标检测)
Faster R-CNN (Faster Region-based Convolutional Neural Networks) Faster R-CNN 是一种高效的目标检测模型,它是在 R-CNN 系列(包括 R-CNN 和 Fast R-CNN)的基础上发展而来的,能够实现对图像中多个对象的检测。Faster R-CNN 引…...
Diffusion中的Unet (DIMP)
针对UNet2DConditionModel模型 查看Unet的源码,得知Unet的down,mid,up blocks的类型分别是: down_block_types: Tuple[str] ("CrossAttnDownBlock2D","CrossAttnDownBlock2D","CrossAttnDownBlock2D","DownBlock2…...
docker服务容器化
docker服务容器化 1 引言2 多个容器间网络联通2.1 单独创建关联2.2 创建时关联 3 服务搭建3.1 镜像清单3.2 容器创建 4 联合实战4.2 flink_sql之kafka到starrocks4.2 flink_sql之mysql到starrocks 5 文献借鉴 1 引言 利用docker可以很效率地搭建服务,本文在win1…...
Flink 从入门到实战
Flink中的批和流 批处理的特点是有界、持久、大量,非常适合需要访问全部记录才能完成的计算工作,一般用于离线统计。 流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统 传输的每个数据项执行操作,一般用于实…...
ffmpeg安装(windows)
ffmpeg安装-windows 前言ffmpeg安装路径安装说明 前言 ffmpeg的安装也是开箱即用的,并没有小码哥说的那么难 ffmpeg安装路径 这就下载好了! 安装说明 将上面的bin目录加入到环境变量,然后在cmd中测试一下: C:\Users\12114\Desktop\test\TaskmgrPlayer\x64\Debug>ffmpe…...
深度解析:Android APP集成与拉起微信小程序开发全攻略
目录 一、背景以及功能介绍 二、Android开发示例 2.1 下载 SDK 2.2 调用接口 2.3 获取小程序原始Id 2.4 报错提示:bad_param 2.4.1 错误日志 2.4.2 解决方案 相关推荐 一、背景以及功能介绍 需求:产品经理需要APP跳转到公司的小程序(最好指定页…...
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection 清华、苹果 个人感觉 Introduction 很自然的让读者理解作者问题的提出,也有例子直接证明了这个问题的存在,值得借鉴!! Related work写的也很不…...
Xilinx Blockset Gateway In 和Gateway out模块使用及参数配置
目录 一、Gateway InSimulink数据到System Generator数据的转换Gateway BlocksBlock Parameters(模块参数)Basic选项卡参数Implementation选项卡参数 二、Gateway OutGateway BlocksBlock Parameters(模块参数)Basic选项卡参数Imp…...
set up RAGFlow on your Mac
个人思考:这些仅仅是工具,和人的思维实际还是有很大差距。 可能是我认知片面,你需要投喂大量的内容给它,它自己其实并不会思考,只是从它的认知里告诉它他知道的东西。举个不太巧当的例子,和以往的方式恰恰相…...
SSM搭建(1)——配置MyBatis
目录 一、框架概述 1.什么是JDBC? 2.JDBC基本流程 3.JDBC的缺点 二、MyBatis的入门程序 1. 创建数据库和表结构 2. MyBatis入门流程总结 3. MyBatis的入门步骤 (1) 创建maven的项目,创建Java工程即可。 &…...
SickOs: 1.1靶场学习小记
学习环境 kali攻击机:Get Kali | Kali Linux vulnhub靶场:https://download.vulnhub.com/sickos/sick0s1.1.7z 靶场描述: 这次夺旗赛清晰地模拟了在安全环境下如何对网络实施黑客策略从而入侵网络的过程。这个虚拟机与我在进攻性安全认证专…...
Flume 监控配置和实践
要解释 Flume 的监控机制,需要了解 Flume 是如何设计其监控架构的,以及如何将性能指标暴露给用户或集成工具。下面我将详细分解 Flume 的监控机制,从基础架构、实现原理到源码解析,并提供非专业人也能理解的通俗解释。 Flume 的监…...
二分法算法
提示:文章 文章目录 前言一、背景二、二分法2.2 最坏情况下冒泡排序的比较次数 三、大算法之一:分治法总结 前言 前期疑问: 本文目标: 二分法 一、背景 问题来源是一个题目,在A[N]字符串数组中匹配长度为M的字符串&…...
3.27浮点数计算
-127就是说,有8位的数来表示指数,然后给他减去127就是这八位劈半,一半表示负数的指数,一半表示整数的指数;对于移码来说,最高位为1时表示为正,为0时表示为负 对阶是要小阶向大阶对齐,…...
存储过程与自然语言处理逻辑的不同与结合
在现代软件开发中,存储过程与自然语言处理(NLP)逻辑都发挥着重要作用。存储过程是一种在数据库内部运行的预编译程序,通常用于处理与数据相关的任务,例如插入、更新、删除数据以及复杂的查询操作。而自然语言处理&…...
数据集搜集器(百科)008
对数据集搜集器(百科)007进行一下改进: 错误处理:增加更多的错误处理,比如网络请求超时、解析错误等。 用户界面:增加一些提示信息,让用户更清楚当前的操作状态。 多线程处理:确保多…...
用Pycharm安装manim
由于版本和工具的差异,manim的安装方式不尽相同。本文用Pycharm来安装manim. 一、准备工作:安装相应版本的python、pycharm和ffmpeg. 此处提供一种安装ffmpeg的方式 下载地址:FFmpeg 下载后,解压到指定目录。 配置环境变量&am…...
HTB:Love[WriteUP]
目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机开放端口进行脚本、服务扫描 使用浏览器访问靶机443端口 尝试利用该功能访问靶机自身80端口 使用ffuf对靶机80端口进行路径FUZZ 漏洞利用 使用searchsploit搜索靶机80端…...
程序设计 26种设计模式,如何分类?
1. 创建型模式 (Creational Patterns) 这些模式关注如何实例化对象。它们通过各种方式封装对象的创建过程,从而提供灵活性和可扩展性。 单例模式 (Singleton):确保某个类只有一个实例,并提供全局访问点。工厂方法模式 (Factory Method)&…...
Oracle对比表与表之间的结构
自己首先想到的就是,navicat有提供结构同步 但是有些时候情况不一样,比如我遇到的是连接不同,而且是互相同步,以最多的列的那个表为样 没有说一个固定的源 那么还可以通过导出表结构去另一个库中执行看是否报错,以此来判断结构的不同 但是我感觉有点儿麻烦 最后想到通过sql语…...
MySQL 查询 执行顺序
MySQL查询的执行顺序大致如下: FROM子句:确定要查询的表。 ON:对JOIN语句中的表进行关联条件指定。 JOIN:如果有的话,对表进行关联。 WHERE:对记录进行过滤。 GROUP BY:根据指定的列分组记录…...
Scala习题
姓名,语文,数学,英语 张伟,87,92,88 李娜,90,85,95 王强,78,90,82 赵敏,92,88,91 孙涛,…...
VSCode 使用教程:项目使用配置、使用哪些插件、Live Server使用问题及解决方案(你想要的,都在这里)
VSCode的配置: Ⅰ、VSCode 可能需要的项目配置:1、项目颜色主题的切换:其一、点击设置 -> 选择主题 -> 选择颜色主题:其二、通过上下键操作,选择想要的主题: 2、项目文件图标主题的切换:其…...
RPA:电商订单处理自动化
哈喽,大家好,我是若木,最近闲暇时间较多,于是便跟着教程做了一个及RPA,谈到这个,可能很多人并不是很了解,但是实际上,这玩意却遍布文末生活的边边角角。话不多说,我直接上…...
分布式协同 - 分布式锁一二事儿
文章目录 导图Pre概述概述1. 分布式互斥和临界资源的协调2. 分布式锁的基本原理3. 分布式锁的实现方式a. 基于数据库实现的分布式锁b. 基于Redis实现的分布式锁c. 基于Zookeeper实现的分布式锁 4. 高并发场景下的分布式锁优化a. 分段锁(Sharded Locks)b.…...
React Native学习笔记(三)
一 组件简介 1.1 简介 RN中的核心组件,是对原生组件的封装 原生组件:Android或ios内的组件核心组件:RN中常用的,来自react-native的组件 原生组件 在 Android 开发中是使用 Kotlin 或 Java 来编写视图;在 iOS 开发…...
什么是B+Tree?
BTree是B-Tree的一种变体,它在数据库索引和文件系统中被广泛使用,因为它优化了磁盘I/O操作,并且对于范围查询非常高效。 以下是BTree的详细全面解释: 基本概念 节点(Node):BTree由节点组成&…...
LeetCode 热题100(十一)【二分查找】(2)
11.4搜索旋转排序数组(中等) 题目描述:leetcode链接 33. 搜索旋转排序数组 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length&…...
《Python基础》之OS模块
目录 前言 各种文件操作方法 1、os.path.exists() 2、os.path.join() 3、os.path.abspath(__file__) 4、os.path.dirname() 5、os.path.isfile() 6、os.path.isdir() 7、os.mkdir() 8、os.remove() 9、os.rmdir() 前言 本文主要介绍使用os模块中的功能操作文件或者文…...
esp32触发相机
esp32触发相机,测试成功上升沿触发 串口发送命令 up 20000 1 20000 触发 #include <Arduino.h>const int outputPin 12; // 输出引脚 String inputCommand ""; // 串口输入缓冲区// 解析命令参数,例如 "up 10 5" 解析为…...
AWS EC2设置用户名密码登录
使用AWS EC2 设置用户名密码登录 步骤 1: 访问控制台 登录到AWS管理控制台。导航至 EC2 Dashboard。在左侧导航栏中选择 Instances。选择需要配置的实例。使用 EC2 Instance Connect 访问实例控制台。 步骤 2: 切换到 root 用户 打开终端或命令行工具,通过SSH连…...
Mac配置和启动 Tomcat
Tomcat 配置与启动: 配置 Tomcat: homebrew install tomcat 启动 Tomcat: 如果cd ~/tomcat/bin文件夹存在startup.sh文件,可以直接在终端运行:./startup.sh 如果~/bin目录下,只有catalina文件。则在终端运行…...
基于深度学习的手势识别算法
基于深度学习的手势识别算法 概述算法原理核心逻辑效果演示使用方式参考文献 概述 本文基于论文 [Simple Baselines for Human Pose Estimation and Tracking[1]](ECCV 2018 Open Access Repository (thecvf.com)) 实现手部姿态估计。 手部姿态估计是从图像或视频帧集中找到手…...
ffmpeg RTP PS推流
要实现 CRtpSendPs 类,使其能够将 H264 数据通过 RTP PS 流推送到指定的 URL,并支持 TCP 和 UDP 传输方式,您需要使用 FFmpeg 库。以下是该类的实现示例,包括必要的初始化、推流和退出函数。 步骤 初始化 FFmpeg 库:…...
uniapp开发支付宝小程序自定义tabbar样式异常
解决方案: 这个问题应该是支付宝基础库的问题,除了依赖于官方更新之外,开发者可以利用《自定义 tabBar》曲线救国 也就是创建一个空内容的自定义tabBar,这样即使 tabBar 被渲染出来,但从视觉上也不会有问题 1.官方文…...
YOLOv8实战无人机视角目标检测
本文采用YOLOv8作为核心算法框架,结合PyQt5构建用户界面,使用Python3进行开发。YOLOv8以其高效的实时检测能力,在多个目标检测任务中展现出卓越性能。本研究针对无人机目标数据集进行训练和优化,该数据集包含丰富的无人机目标图像…...
RNN详解及其实现
目录 概述为什么需要 RNN?RNN 理解及其简单实现RNN 完成文本分类任务RNN 存在的问题 概述 提及 RNN,绝大部分人都知道他是一个用于序列任务的神经网络,会提及他保存了时序信息,但是,为什么需要考虑时序的信息…...
SpringBoot开发——详细讲解 Spring Boot 项目中的 POM 配置
文章目录 一、POM 文件简介二、单模块项目的 POM 配置1. 创建基本的 Spring Boot 单模块项目2. 重点解析三、多模块项目的 POM 配置1. 多模块项目结构2. 父模块 POM 文件3. 子模块 POM 文件4. 重点解析结语在 Spring Boot 项目中,POM(Project Object Model)文件起着关键作用…...
数据仓库: 8- 数据仓库性能优化
CSDN 目录展示 目录 8- 数据仓库性能优化8.1 查询优化8.1.1 索引优化8.1.2 分区和分桶8.1.3 使用缓存8.1.4 查询简化与重写8.1.5 聚合优化8.1.6 并行化和分布式计算8.1.7 基于列存储的优化8.1.8 表的分区和数据清洗8.1.9 查询提示 (Hints)8.1.10 自动调优工具 8.2 索引设计8.2…...
如何使用GCC手动编译stm32程序
如何不使用任何IDE(集成开发环境)编译stm32程序? 集成开发环境将编辑器、编译器、链接器、调试器等开发工具集成在一个统一的软件中,使得开发人员可以更加简单、高效地完成软件开发过程。如果我们不使用KEIL,IAR等集成开发环境,…...
2023年MathorCup高校数学建模挑战赛—大数据竞赛B题电商零售商家需求预测及库存优化问题求解全过程文档及程序
2023年MathorCup高校数学建模挑战赛—大数据竞赛 B题 电商零售商家需求预测及库存优化问题 原题再现: 电商平台存在着上千个商家,他们会将商品货物放在电商配套的仓库,电商平台会对这些货物进行统一管理。通过科学的管理手段和智能决策&…...
不可分割的整体—系统思考的微妙法则
不可分割的整体——系统思考的微妙法则 作为企业领导者,我们经常需要做出决策,但有时候,我们会忽略一个事实:每个决策都不是孤立的,它背后都是一个复杂系统的一部分。 无论是市场动态、团队协作,还是产品…...
使用Grafana K6来测测你的系统负载能力
背景 近期我们有个号称会有很高很高并发的系统要上线,为了测试一下自己开发的系统的负载能力,准备了点海克斯科技,来看看抗不抗的住。 之前笔者写过用Apache JMeter进行压力测试的文章(传送门👉:https://…...
ENSP IPV6-over-IPV4
IPv6是网络层协议的第二代标准协议,一个IPv6地址同样可以分为网络前缀和主机ID两个部分。 可以将IPV4的网络看成IPV6的承载网,只有IPv4网络是连通的,则IPv6网络才有可能连通。所以配置的时候需要先配置IPv4网络的路由功能,再配IP…...
FLASH分区---FAT分区添加操作
1、板卡配置 注意:使用fat文件系统的时候,必须download进去一个fat系统的镜像 fat.img 0xee0000 注意:需要打开fat宏定义(涉及到底层,必须开,否则无法创建文件) 2、板卡.c 配置 修改分区大小、增…...
javax.xml.ws.soap.SOAPFaultException: ZONE_OFFSET
javax.xml.ws.soap.SOAPFaultException 表示 SOAP 调用过程中发生了错误,并且服务端返回了一个 SOAP Fault。 错误信息中提到的 ZONE_OFFSET 可能指的是时区偏移量。在日期和时间处理中,时区偏移量是指格林威治标准时间 (GMT) 的偏移量。如果服务期望特…...
针对解决conda环境BUG的个人笔记
1-conda学习&安装 安装视频: 零基础教程:基于Anaconda和PyCharm配置Pytorch环境_哔哩哔哩_bilibili 安装过程: MX250笔记本安装Pytorch、CUDA和cuDNN-CSDN博客 Win10MX250CUDA10.1cuDNNPytorch1.4安装测试全过程(吐血)_nvidia geforc…...
代理IP与百度在信息时代的交互
目录 一、代理IP的基本概念和工作原理 二、代理IP在百度搜索中的多重作用 解决网络延时问题,提高搜索速度 提高网络安全 隐藏用户的真实IP地址,保护个人隐私 突破访问限制,拓宽网络视野 三、代理IP在百度关键词排名优化中的应用 模拟…...
10、PyTorch autograd使用教程
文章目录 1. 相关思考2. 矩阵求导3. 两种方法求jacobian 1. 相关思考 2. 矩阵求导 假设我们有如下向量: y 1 3 x 1 5 [ w T ] 5 3 b 1 3 \begin{equation} y_{1\times3}x_{1\times5}[w^T]_{5\times3}b_{1\times3} \end{equation} y13x15[wT]53b13…...
Flink随笔 20241129 流数据处理:以生产线烤鸡为例理解 Flink
流数据(streaming data)就像是一条永不停歇的生产线,源源不断地向前推进,带来新的数据。而 Apache Flink 就是这条生产线的核心,它负责对数据进行处理、分类、聚合和存储。为了更好地理解 Flink 的流处理,我…...