当前位置: 首页 > news >正文

sklearn学习

介绍:scaler:换算的意思

1. 归一化MinMaxScaler()

归一化的意思是将一堆数,如果比较离散,为了让数据更适合模型训练,将离散的数据压缩到0到1之间,以方便模型更高效优质的学习,而对数据的预处理

例如:[-100,3,50,800,10900]在这组数据中最小的是-100,最大是10900,这样的数太分散,如果压缩到0到1,则更方便神经网络学习

压缩数据的公式:

  • x 是原始特征值。
  • min( x ) 是特征的最⼩值。
  • max( x ) 是特征的最⼤值。
  • x' 是缩放后的特征值。
使用numpy对数据进行压缩:
import numpy as npdata = np.array([[11, 3, -10], [21, -30, 1], [100, 3, 12]])
maxitem = np.max(data, axis=0)
minitem = np.min(data, axis=0)
print(maxitem, minitem)
rangeitem = maxitem - minitemrangeitem[rangeitem == 0] = 1
result = (data-minitem)/rangeitem
print(result)   

解释:

        这个是使用numpy对数据进行压缩,使用以上的公式

        这里rangeitem[rangeitem == 0] = 1的解释:

rangeitem == 0会得到一个bool类型的数组[False False False],这样就构成了布尔索引,当为true也就是max和min相同时,为了确保分母不为0,则将其分母变为1

用sklearn来归一化:

import numpy as np
from sklearn.preprocessing import MinMaxScaler
print("方式一")
data = np.array([[11, 3, -10], [21, -30, 1], [100, 3, 12]])
scaler = MinMaxScaler()
scaler.fit(data)
print(scaler.data_min_,scaler.data_max_)
result1 = scaler.transform(data)
print(result1)
print("方式二")
#将data数组归一化,先调用构造函数创造归一化对象,然后使用fit合适求出min和max,再使用transform将使用min和max对数据进行归一化
result2 = MinMaxScaler().fit_transform(data)
print(result2)

解释:MinMaxScaler()是使用构造方法创建一个归一化器scaler

scaler.fit(数据)是对数据进行计算出最大最小特征值,scaler.transfrom(数据)是对数据使用最大最小值进行计算得出归一化的结果。

也可以简写:MinMaxScaler().fit_transform(data)

2. 标准化StandardScaler

就是将一堆数据,压缩为一个服从正太分布的数据,以方便后期神经网络学习,也就是对数据进行预处理

话不多说上代码:

from sklearn.preprocessing import StandardScalerdata = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
print("方式一")
scaler = StandardScaler()
scaler.fit(data)
#获取均值和方差
print(scaler.mean_,scaler.var_)
#使用均值和方差对data数据进行标准化处理
result = scaler.transform(data)print(result)
#将标准化的结果反向求出原始数据
inv_res = scaler.inverse_transform(result)
print(inv_res)print("方式二")
scaler1 = StandardScaler()
result1 = scaler1.fit_transform(data)
inv_res1 = scaler1.inverse_transform(result1)
print(inv_res1)

解释:StandardScaler()是获取标准化器对象scaler,有属性mean_均值,和var_方差

scaler.fit_transform(数据)意思是对数据进行标准化处理

scaler1.inverse_transform(result1)意思是对标准化后的数据进行反向求出原始数据

3. 缺失值处理SimpleImputer

这个SimpleImputer不是在sklearn.preprocessing包下的,而是sklearn.impute包下的

机器学习或数据挖掘中,常常会有重要的字段缺失值很多,但⼜不能舍弃字段的情况。因此,数据
预处理中⾮常重要的⼀项就是处理缺失值。
from sklearn.impute import SimpleImputer
import pandas as pd
df = pd.read_csv("titanic_train.csv")
age = df.loc[:,"Age"].values.reshape(-1,1)
print(age[:20])
print("===================")
age_median = SimpleImputer(strategy="median").fit_transform(age)
print(age_median[:20])
df.loc[:,"Age"]=age_median

解释,用panda读取csv数据,然后使用df.loc标签索引,0轴索引全部,1轴索引标签为Age的,让后使用.values将pandas结果的数据age列转化为np的数组,然后reshape变为以列为主的二维数据

SimpleImputer()是缺失值补全工具对象创建方法,然后照样使用.fit_transform(age)对age列进行缺失值补全,至于按照什么模式填补,则看SimpleImputer中传的strategy的参数,有平均值,中值填补等

4. Sklearn 中的三种编码工具详解

4.1 LabelEncoder

功能:将单一特征的分类数据转换为整数形式。

  • 每个类别映射到一个唯一的整数。
  • 适用于单个特征(一维数据)。

特点

  • 不生成额外的列。
  • 不适合处理无序的分类数据,因为整数编码可能引入错误的顺序关系。

工作原理:

from sklearn.preprocessing import LabelEncoderdata = ['red', 'green', 'blue', 'green']
encoder = LabelEncoder()
encoded = encoder.fit_transform(data)
print(encoded)
# 输出: [2, 1, 0, 1]

映射关系为:

blue -> 0
green -> 1
red -> 2

4.2 OrdinalEncoder

功能:将二维数据中的多个特征的类别映射为整数值。

  • 每个类别映射到一个唯一的整数值。
  • 适用于具有顺序关系的类别数据(如“低、中、高”)。

特点

  • 用于多特征
  • 如果类别之间无顺序关系,使用此方法可能导致模型误解类别之间的关系。

工作原理

from sklearn.preprocessing import OrdinalEncoderdata = [['low'], ['medium'], ['high'], ['medium']]
encoder = OrdinalEncoder()
encoded = encoder.fit_transform(data)
print(encoded)
# 输出: [[1.], [2.], [0.], [2.]]

映射关系为:

high -> 0
low -> 1
medium -> 2

注意:

这里的映射顺序是人为指定的。如果类别本身无序(比如颜色),这种编码可能会引入不正确的顺序信息。

4.3 OneHotEncoder

功能:将类别变量转换为哑变量(独热编码)。

  • 每个类别用一个二进制列表示。
  • 适用于无序的类别数据。

特点

  • 不引入类别之间的顺序关系。
  • 输出结果可以是稀疏矩阵,节省存储空间。

工作原理

from sklearn.preprocessing import OneHotEncoderdata = [['red'], ['green'], ['blue'], ['green']]
encoder = OneHotEncoder(sparse=False)
encoded = encoder.fit_transform(data)
print(encoded)

输出为:

[[0. 0. 1.][0. 1. 0.][1. 0. 0.][0. 1. 0.]]

映射关系为:

red   -> [0. 0. 1.]
green -> [0. 1. 0.]
blue  -> [1. 0. 0.]

4.4. 编码方法的选择

编码方法适用场景优点缺点
LabelEncode一维特征,单个特征有少量类别,无需表示顺序关系。简单直接,输出紧凑可能引入虚假顺序
OrdinalEncoder多个特征,类别本身有顺序关系(如教育程度:小学<中学<大学)。适合处理有序类别无法处理无序类别
OneHotEncoder多个特征,类别之间无顺序关系(如颜色、城市名称)。避免顺序误解,生成独立的二进制列高维度类别会导致维数过大,稀疏矩阵占用空间

4.5. 为什么要区分哑变量和整数编码?

  • 整数编码:可能引入类别之间的虚假顺序关系。例如,如果模型看到 Color=[Red, Green, Blue] 编码为 [0, 1, 2],它可能错误地认为 GreenRed 大,而 BlueGreen 大。
  • 哑变量(独热编码):通过创建独立的列避免类别之间的顺序关系,特别适用于非数值型的分类变量。

4.6. 示例对比

from sklearn.preprocessing import LabelEncoder, OneHotEncoder, OrdinalEncoder
import numpy as np# 数据
data = np.array(['red', 'green', 'blue', 'green', 'red'])# 1. LabelEncoder
le = LabelEncoder()
label_encoded = le.fit_transform(data)
print("LabelEncoder:", label_encoded)
# 输出: [2 1 0 1 2]# 2. OrdinalEncoder (适用于二维数据)
oe = OrdinalEncoder()
ordinal_encoded = oe.fit_transform(data.reshape(-1, 1))
print("OrdinalEncoder:", ordinal_encoded)
# 输出: [[2.]
#       [1.]
#       [0.]
#       [1.]
#       [2.]]# 3. OneHotEncoder
ohe = OneHotEncoder(sparse=False)
one_hot_encoded = ohe.fit_transform(data.reshape(-1, 1))
print("OneHotEncoder:\n", one_hot_encoded)
# 输出:
# [[0. 0. 1.]
#  [0. 1. 0.]
#  [1. 0. 0.]
#  [0. 1. 0.]
#  [0. 0. 1.]]

4.7. 总结

  • 编码和哑变量是处理分类数据的重要工具。
  • LabelEncoderOrdinalEncoder 将类别转换为整数,适用于少量类别的数据,但需注意顺序问题。
  • OneHotEncoder 将类别转化为二进制向量,适合无序类别数据。
  • 选择合适的编码方式可以提高模型的准确性和效率。

5. knn分类

KNN (K-Nearest Neighbors)

简介:

KNN 是一种 监督学习 算法,主要用于分类和回归问题。它的基本思想是:给定一个新的数据点,查找在特征空间中最接近(最近)的 K 个数据点,然后通过这些数据点的标签来预测新数据点的标签。

工作原理:

  1. 选择 K 值:首先选择一个正整数 K,即最近邻的数量。
  2. 计算距离:对于每一个待分类的数据点,计算它与所有训练数据点的距离。常用的距离度量方式包括欧氏距离、曼哈顿距离等。
  3. 选取 K 个最近邻:根据计算得到的距离,找到 K 个距离最近的训练数据点。
  4. 分类:对于分类任务,通过 K 个邻居的标签进行投票,选票最多的类别作为该点的预测标签。
    • 回归任务:对于回归任务,取这 K 个邻居的平均值作为预测值。

优点:

  • 简单且直观,易于理解和实现。
  • 非参数化算法,不需要假设数据的分布。
  • 可以用于多类别分类。

缺点:

  • 计算量大,尤其在数据量大的时候,因为每次预测都要计算与所有训练数据点的距离。
  • 对于高维数据,KNN 的表现会变差(维度灾难),因为高维空间中数据点之间的距离差异变得不明显。
  • 对噪声敏感,异常值可能会影响最终的分类结果。

应用场景:

  • 推荐系统(例如电影推荐)。
  • 图像识别、语音识别。
  • 基于相似度的分类任务。
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KNeighborsClassifier# 定义样本特征数据和对应的标签
X = np.array([[1, 2], [2, 3], [3, 1], [2, 4], [6, 5], [7, 8], [8, 6], [6, 7], [7, 9], [8, 8]])
labels = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1])# 定义一个新的特征数据
X_new = np.array([[3, 5]])# 绘制类别为0的数据,红色点
plt.scatter(X[labels == 0, 0], X[labels == 0, 1], color="red", label="Class 0")# 绘制类别为1的数据,蓝色点
plt.scatter(X[labels == 1, 0], X[labels == 1, 1], color="blue", marker="o", label="Class 1")# 绘制新的特征数据,绿色加号
plt.scatter(X_new[0, 0], X_new[0, 1], color="green", marker="+", label="New Point")# 创建KNeighborsClassifier分类器对象
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X, labels)  # 使用样本的特征和标签训Lor
new_label = knn.predict(X_new)  # 预测新数据# 绘制图例和标题
plt.legend()
plt.title("KNN Visualization")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")# 显示图像
plt.show()

6. kmeans分类

简介:

KMeans 是一种 无监督学习 聚类算法,用于将数据集分成若干个簇(clusters)。算法试图根据数据点之间的相似性将数据划分成 K 个簇。每个簇由其簇中心(质心)代表,算法通过最小化数据点到质心的距离来寻找最佳的簇划分。

工作原理:

  1. 选择 K 值:指定需要聚类的簇的数量 K
  2. 初始化质心:随机选择 K 个数据点作为初始簇中心(质心)。
  3. 分配数据点:将每个数据点分配到距离最近的簇中心,形成 K 个簇。
  4. 更新质心:计算每个簇中所有数据点的平均值,并将其作为新的簇中心。
  5. 迭代:重复步骤 3 和 4,直到簇中心不再变化,或者变化非常小,表明聚类已经收敛。

优点:

  • 算法简单且高效,适合大规模数据。
  • 结果易于理解,可以通过质心直观地表示每个簇。
  • 适用于球形簇数据。

缺点:

  • 需要指定 K 值,即簇的数量,通常需要通过实验来确定。
  • 对初始簇中心敏感,可能会陷入局部最优解。可以通过多次运行并选择最佳结果来缓解这一问题。
  • 对离群点(噪声)敏感,离群点可能影响簇的划分。
  • 不适用于非球形簇,或者簇大小差异过大的情况。

应用场景:

  • 客户细分(例如根据消费习惯将用户分组)。
  • 图像压缩(通过聚类色彩进行压缩)。
  • 数据降维和特征学习。

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans# 生成数据
X, y = make_blobs(n_samples=200, centers=5, random_state=0)
print(X,y)
# 绘制原始数据点
plt.scatter(X[:, 0], X[:, 1], c=y)  # 使用y作为颜色标识# 创建KMeans聚类模型
kmeans = KMeans(n_clusters=10, random_state=3)
kmeans.fit(X)# 获取KMeans聚类结果的标签
y_kmeans = kmeans.predict(X)
print(y_kmeans)
# 绘制聚类后的数据点
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans)  # 根据聚类结果给每个点上色plt.show()

7. KNN和KMeans对比

8. 总结sklearn中的几个方法

归一化MinMaxScaler是sklearn.preprocess下的

标准化StandardScaler是sklearn.preprocess下的

缺失值SimpleImputer是sklearn.Imputer下的

三种编码LabelEncoder,OrdinalEncoder,OneHotEncoder都是sklearn.preprocess下的

我总结就是,sklearn是对数据做预处理的,先将数据进行缺失值补全,然后再对非数字类型的数据编码为数字类型,有三种编码,更加场景使用适合的编码模式,最后再将所有数字类型转为0到1之间或者转为正太分布,以适应模型学习。

预处理:缺失值补全------->数据编码统一转为数字类型-------->归一化或标准化压缩数据----->做一定的分类处理

相关文章:

sklearn学习

介绍&#xff1a;scaler&#xff1a;换算的意思 1. 归一化MinMaxScaler() 归一化的意思是将一堆数&#xff0c;如果比较离散&#xff0c;为了让数据更适合模型训练&#xff0c;将离散的数据压缩到0到1之间&#xff0c;以方便模型更高效优质的学习&#xff0c;而对数据的预处理…...

# [Unity] 【游戏开发】Unity开发基础2-Unity脚本编程基础详解

Unity脚本编程是创建互动式游戏体验的核心技能之一。本文将详细讲解Unity脚本编程的基础知识,包括变量和数据类型、程序逻辑、方法等方面,并通过实例展示如何使用这些基本知识完成简单功能的实现。 1. 新建Unity脚本的基本结构 当在Unity中创建一个脚本时,Unity会生成如下基…...

【强化学习的数学原理】第02课-贝尔曼公式-笔记

学习资料&#xff1a;bilibili 西湖大学赵世钰老师的【强化学习的数学原理】课程。链接&#xff1a;强化学习的数学原理 西湖大学 赵世钰 文章目录 一、为什么return重要&#xff1f;如何计算return&#xff1f;二、state value的定义三、Bellman公式的详细推导四、公式向量形式…...

C语言-数学基础问题

一.奇数、偶数问题 1.从键盘上输入一个整数&#xff0c;判断并输出它是奇数还是偶数。 //从键盘上输入一个整数&#xff0c;判断并输出它是奇数还是偶数。 main() {int i;printf("输入一个整数:\n");scanf("%d",&i);if(i%20)printf("它是偶数\n…...

2024算法基础公选课练习四(综合2)

一、前言 最后几个题确实有难度&#xff0c;这次有两题没整出来 二、题目总览 三、具体题目 3.1 问题 A: 水题系列1-B(班级排位) 思路 最暴力的思路是写线段树&#xff0c;然后暴力枚举两个端点&#xff0c;总体时间复杂度为O(n^2*logn)最坏会到1e9的数量级&#xff0c;可能…...

小程序-使用 iconfont 图标库报错:Failed to load font

官方默认可以忽略此错误&#xff0c;在清除缓存后首次刷新会显示此错误&#xff0c;重新渲染错误消失 解决方法&#xff1a; 在 iconfont 图标库选择项目设置 选中 Base64 保存&#xff0c;重新点击链接 -> 复制代码到项目中 操作步骤&#xff1a;...

鲸鱼机器人和乐高机器人的比较

鲸鱼机器人和乐高机器人各有其独特的优势和特点&#xff0c;家长在选择时可以根据孩子的年龄、兴趣、经济能力等因素进行综合考虑&#xff0c;选择最适合孩子的教育机器人产品。 优势 鲸鱼机器人 1&#xff09;价格亲民&#xff1a;鲸鱼机器人的产品价格相对乐高更为亲民&…...

解决单元测试时找不到类名

场景&#xff1a; springboot单元测试mockito对mapper进行mock时&#xff1a; tk.mybatis.mapper.mapperexception: 无法获取实体类 XX.xx 对应的表名 分析&#xff1a; 使用了一个方法&#xff1a;Example examplenew Example(User.class); 进入源码后发现Entityhelper没…...

簡單易懂:如何在Windows系統中修改IP地址?

無論是為了連接到一個新的網路&#xff0c;還是為了解決網路連接問題&#xff0c;修改IP地址都是一個常見的操作。本文將詳細介紹如何在Windows系統中修改IP地址&#xff0c;包括靜態IP地址的設置和動態IP地址的獲取。 IP地址是什麼&#xff1f; IP地址是互聯網協議地址的簡稱…...

(详细文档!)java swing学生信息管理系统 +mysql

第一章&#xff1a;系统功能分析 1.1、系统简介与开发背景 学生信息管理系统是在信息化时代&#xff0c;特别是在教育领域中产生的。随着学校规模的不断扩大和信息化技术的不断发展&#xff0c;传统的纸质档案管理方式已经无法满足学校对学生信息管理的需求&#xff0c;因此需…...

OSG开发笔记(三十三):同时观察物体不同角度的多视图从相机技术

​若该文为原创文章&#xff0c;未经允许不得转载 本文章博客地址&#xff1a;https://blog.csdn.net/qq21497936/article/details/143932273 各位读者&#xff0c;知识无穷而人力有穷&#xff0c;要么改需求&#xff0c;要么找专业人士&#xff0c;要么自己研究 长沙红胖子Qt…...

[极客大挑战 2019]BabySQL--详细解析

信息搜集 进入界面&#xff1a; 输入用户名为admin&#xff0c;密码随便输一个&#xff1a; 发现是GET传参&#xff0c;有username和password两个传参点。 我们测试一下password点位能不能注入&#xff1a; 单引号闭合报错&#xff0c;根据报错信息&#xff0c;我们可以判断…...

Java的字符串操作(二)(代码示例)

1. 字符串的定义 // 直接赋值方式定义字符串 String str1 "Hello World";// 使用new关键字定义字符串 String str2 new String("Hello World");// 可以通过打印对象的哈希码来查看是否是同一个对象&#xff08;在一定程度上反映引用情况&#xff09; Sy…...

2024-2025 ICPC, NERC, Southern and Volga Russian Regional Contest(ABCGJLN)

文章目录 N. Fixing the Expression思路code J. Waiting for...思路code C. DIY思路code L. Bridge Renovation思路code A. Bonus Project思路code G. Guess One Character思路code B. Make It Equal思路code N. Fixing the Expression 思路 签到题&#xff0c;只改变中间的字…...

SpringBoot(9)-Dubbo+Zookeeper

目录 一、了解分布式系统 二、RPC 三、Dubbo 四、SpringBootDubboZookeeper 4.1 框架搭建 4.2 实现RPC 一、了解分布式系统 分布式系统&#xff1a;由一组通过网络进行通信&#xff0c;为了完成共同的任务而协调工作的计算机节点组成的系统 二、RPC RPC&#xff1a;远程…...

现代密码学

概论 计算机安全的最核心三个关键目标&#xff08;指标&#xff09;/为&#xff1a;保密性 Confidentiality、完整性 Integrity、可用性 Availability &#xff0c;三者称为 CIA三元组 数据保密性&#xff1a;确保隐私或是秘密信息不向非授权者泄漏&#xff0c;也不被非授权者使…...

websocket是什么?

一、定义 Websocket是一种在单个TCP连接上进行全双工通信的协议&#xff0c;它允许服务器主动向客户端推送数据&#xff0c;而不需要客户端不断的轮询服务器来获取数据 与http协议不同&#xff0c;http是一种无状态的&#xff0c;请求&#xff0c;响应模式的协议(单向通信)&a…...

idea怎么打开两个窗口,运行两个项目

今天在开发项目的时候&#xff0c;前端希望运行一下以前的项目&#xff0c;于是就需要开两个 idea 窗口&#xff0c;运行两个项目 这里记录一下如何设置&#xff1a;首先依次点击&#xff1a; File -> Settings -> Appearance & Behavior ->System Settings 看到如…...

aws服务--机密数据存储KMS(1)介绍和使用

在AWS(Amazon Web Services)中存储机密数据时,安全性和合规性是最重要的考虑因素。AWS 提供了多个服务和工具,帮助用户确保数据的安全性、机密性以及合规性。AWS Secrets Manager、KMS(Key Management Service)是推荐的存储机密数据的AWS服务和最佳实践。这里先看KMS。 …...

怎么编译OpenWrt镜像?-基于Widora开发板

1.准备相应的环境&#xff0c;我使用的环境是VMware16ubuntu20.04&#xff0c;如图1所示安装编译所需的依赖包&#xff1b; sudo apt-get install build-essential asciidoc binutils bzip2 gawk gettext git libncurses5-dev libz-dev patch python3 python2.7 unzip zlib1g-…...

Android opencv使用Core.hconcat 进行图像拼接

Android 集成OpenCV-CSDN博客 import org.opencv.android.Utils; import org.opencv.core.Core; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.imgcodecs.Imgcodecs; import android.graphics.Bitmap; import android.graphics.BitmapFactor…...

小杨的N字矩阵c++

题目描述 小杨想要构造一个m*m 的 N 字矩阵&#xff08; m为奇数&#xff09;&#xff0c;这个矩阵的从左上角到右下角的对角线、第1 列和第m 列都 是半角加号 &#xff0c;其余都是半角减号 - 。例如&#xff0c;一个 5*5 的 N 字矩阵如下&#xff1a; --- -- -- -- --- 请…...

C 语言面向对象

面向对象的基本特性&#xff1a;封装&#xff0c;继承&#xff0c;多态 1.0 面向过程概念 当我们在编写程序时&#xff0c;通常采用以下步骤&#xff1a; 1. 将问题的解法分解成若干步骤 2. 使用函数分别实现这些步骤 3. 依次调用这些函数 这种编程风格的被称作 面向过程…...

初试无监督学习 - K均值聚类算法

文章目录 1. K均值聚类算法概述2. k均值聚类算法演示2.1 准备工作2.2 生成聚类用的样本数据集2.3 初始化KMeans模型对象&#xff0c;并指定类别数量2.4 用样本数据训练模型2.5 用训练好的模型生成预测结果2.6 输出预测结果2.7 可视化预测结果 3. 实战小结 1. K均值聚类算法概述…...

部署实战(二)--修改jar中的文件并重新打包成jar文件

一.jar文件 JAR 文件就是 Java Archive &#xff08; Java 档案文件&#xff09;&#xff0c;它是 Java 的一种文档格式JAR 文件与 ZIP 文件唯一的区别就是在 JAR 文件的内容中&#xff0c;多出了一个META-INF/MANIFEST.MF 文件META-INF/MANIFEST.MF 文件在生成 JAR 文件的时候…...

C++中的原子操作:原子性、内存顺序、性能优化与原子变量赋值

一、原子操作与原子性 原子操作&#xff08;atomic operation&#xff09;是并发编程中的一个核心概念&#xff0c;指的是在多线程环境中&#xff0c;一个操作一旦开始&#xff0c;就不会被其他线程的操作打断&#xff0c;直至该操作完成。这种不可分割的特性保证了操作的原子…...

【JavaEE初阶】多线程初阶下部

文章目录 前言一、volatile关键字volatile 能保证内存可见性 二、wait 和 notify2.1 wait()方法2.2 notify()方法2.3 notifyAll()方法2.4 wait 和 sleep 的对比&#xff08;面试题&#xff09; 三、多线程案例单例模式 四、总结-保证线程安全的思路五、对比线程和进程总结 前言…...

数据结构(Java版)第二期:包装类和泛型

目录 一、包装类 1.1. 基本类型和对应的包装类 1.2. 装箱和拆箱 1.3. 自动装箱和自动拆箱 二、泛型的概念 三、引出泛型 3.1. 语法规则 3.2. 泛型的优点 四、类型擦除 4.1. 擦除的机制 五、泛型的上界 5.1. 泛型的上界的定义 5.2. 语法规则 六、泛型方法 6.1…...

[原创](Modern C++)现在C++的关键性概念: 通俗易懂的解释“多态“与“虚函数“的内在关系

常用网名: 猪头三 出生日期: 1981.XX.XX 企鹅交流: 643439947 个人网站: 80x86汇编小站 编程生涯: 2001年~至今[共23年] 职业生涯: 21年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、Delphi、XCode、Eclipse、C Bui…...

python操作Elasticsearch

使用elasticsearch 6.x版本&#xff0c;操作es数据。 #! -*- coding:utf-8 -* import timefrom elasticsearch import Elasticsearch, helpersclass EstUtil:_instance Nonedef __new__(cls, *args, **kwargs):if not cls._instance:cls._instance super(EstUtil, cls).__ne…...

【数据分享】2024年我国省市县三级的住宿服务设施数量(8类住宿设施/Excel/Shp格式)

宾馆酒店、旅馆招待所等住宿服务设施的配置情况是一个城市公共基础设施完善程度的重要体现&#xff0c;一个城市住宿服务设施种类越丰富&#xff0c;数量越多&#xff0c;通常能表示这个城市的公共服务水平越高&#xff01; 本次我们为大家带来的是我国各省份、各地级市、各区…...

从尾到头打印链表 剑指offer

题目描述 输入一个链表的头节点&#xff0c;从尾到头反过来打印出每个节点的值。 链表节点定义如下&#xff1a; struct ListNode {int m_nKey;ListNode*m_pNext; }; 代码实现 栈实现&#xff1a; 递归实现&#xff1a; 但是用递归实现可能存在的问题&#xff1a;...

【测试工具JMeter篇】JMeter性能测试入门级教程(二)出炉,测试君请各位收藏了!!!

上篇文章&#xff1a;CSDN 我们介绍了JMeter的一些原理介绍&#xff0c;以及安装配置和启动流程&#xff0c;本文我们就来讲讲JMeter如何使用。 一、JMeter目录结构组成 1. 根目录 Jmeter安装包解压后的根目录如下图&#xff1a; 1.1 backups目录&#xff1a;脚本备份目录&am…...

【JavaEE】Servlet:表白墙

文章目录 一、前端二、前置知识三、代码1、后端2、前端3、总结 四、存入数据库1、引入 mysql 的依赖&#xff0c;mysql 驱动包2、创建数据库数据表3、调整上述后端代码3.1 封装数据库操作&#xff0c;和数据库建立连接3.2 调整后端代码 一、前端 <!DOCTYPE html> <ht…...

WPF中如何让Textbox显示为一条直线

由于Textbox直接使用是一条直线 设置如下代码 可以让Textbox变为直线输入 <Style TargetType"TextBox"x:Key"UsernameTextBoxStyle"><Setter Property"Template"><Setter.Value><ControlTemplate TargetType"{x:Typ…...

多维数组与特殊矩阵:存储与压缩

多维数组与特殊矩阵&#xff1a;存储与压缩 一、多维数组的存储 &#xff08;一&#xff09;基本概念 多维数组是线性表的推广&#xff0c;例如二维数组可以看作是元素为一维数组的线性表&#xff0c;三维数组可以看作是元素为二维数组的线性表&#xff0c;以此类推。在内存…...

第三讲 架构详解:“隐语”可信隐私计算开源框架

目录 隐语架构 隐语架构拆解 产品层 算法层 计算层 资源层 互联互通 跨域管控 本文主要是记录参加隐语开源社区推出的第四期隐私计算实训营学习到的相关内容。 隐语架构 隐语架构拆解 产品层 产品定位&#xff1a; 通过可视化产品&#xff0c;降低终端用户的体验和演…...

springboot项目使用maven打包,第三方jar问题

springboot项目使用maven package打包为可执行jar后&#xff0c;第三方jar会被打包进去吗&#xff1f; 答案是肯定的。做了实验如下&#xff1a; 第三方jar的项目结构及jar包结构如下&#xff1a;&#xff08;该第三方jar采用的是maven工程&#xff0c;打包为普通jar&#xf…...

突破内存限制:Mac Mini M2 服务器化实践指南

本篇文章&#xff0c;我们聊聊如何使用 Mac Mini M2 来实现比上篇文章性价比更高的内存服务器使用&#xff0c;分享背后的一些小的思考。 希望对有类似需求的你有帮助。 写在前面 在上文《ThinkPad Redis&#xff1a;构建亿级数据毫秒级查询的平民方案》中&#xff0c;我们…...

【Linux】Linux系统电源状态

前言 本文主要介绍Linux系统电源状态。 Linux内核代码声明如下&#xff0c;位于kernel/power/suspend.c。 参考链接 Linux系统电源状态 在Linux操作系统中&#xff0c;将电源划分为如下几个状态&#xff1a; ACPI StateLinux StateDescriptionS0On(on)WorkingS1Standby(sta…...

《用Python画蔡徐坤:艺术与编程的结合》

简介 大家好&#xff01;今天带来一篇有趣的Python编程项目&#xff0c;用代码画出知名偶像蔡徐坤的形象。这个项目使用了Python的turtle库&#xff0c;通过简单的几何图形和精心设计的代码来展示艺术与编程的结合。 以下是完整的代码和效果介绍&#xff0c;快来试试看吧&…...

ARM(安谋) China处理器

0 Preface/Foreword 0.1 参考博客 Cortex-M23/M33与STAR-MC1星辰处理器 ARM China&#xff0c;2018年4月established&#xff0c;独立运行。 1 处理器类型 1.1 周易AIPU 1.2 STAR-MC1&#xff08;星辰处理器&#xff09; STAT-MC1&#xff0c;主要为满足AIOT应用性能、功…...

硬中断关闭后的堆栈抓取方法

一、背景 性能和稳定性是一个计算机工程里的一个永恒的主题。其中尤其稳定性这块的问题发现和问题分析及问题解决就依赖合适的对系统的观测的手段&#xff0c;帮助我们发现问题&#xff0c;识别问题原因最后才能解决问题。稳定性问题里尤其底层问题里&#xff0c;除了panic问题…...

电影风格城市夜景旅拍Lr调色教程,手机滤镜PS+Lightroom预设下载!

调色教程 电影风格城市夜景旅拍通过 Lightroom 调色&#xff0c;将城市夜晚的景色打造出如同电影画面般的质感和氛围。以独特的色彩和光影处理&#xff0c;展现出城市夜景的魅力与神秘。 预设信息 调色风格&#xff1a;电影风格预设适合类型&#xff1a;人像&#xff0c;街拍…...

基于FPGA的2FSK调制-串口收发-带tb仿真文件-实际上板验证成功

基于FPGA的2FSK调制 前言一、2FSK储备知识二、代码分析1.模块分析2.波形分析 总结 前言 设计实现连续相位 2FSK 调制器&#xff0c;2FSK 的两个频率为:fI15KHz&#xff0c;f23KHz&#xff0c;波特率为 1500 bps,比特0映射为f 载波&#xff0c;比特1映射为 载波。 1&#xff09…...

【Python】构建事件驱动架构:用Python实现实时应用的高效系统

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 事件驱动架构(Event-Driven Architecture,EDA)是一种基于事件流动进行系统设计的模式,广泛应用于游戏开发、实时监控和分布式系统中。它通过解耦事件的生产者和消费者,提升系统的可扩展性和灵活性。本文章从…...

安装 Docker(使用国内源)

一、安装Docker-ce 1、下载阿里云的repo源 [rootlocalhost ~]# yum install yum-utils -y && yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo && yum makecache # 尝试列出 docker-ce 的版本 [rootlocalh…...

001 MATLAB介绍

前言&#xff1a; 软件获取渠道有很多&#xff0c;难点也就是百度网盘下载慢&#xff1b; 线上版本每月有时间限制。 01 MATLAB介绍 性质&#xff1a; MATLAB即Matrix Laboratory 矩阵实验室的意思&#xff0c;是功能强大的计算机高级语言, 已广泛应用于各学科研究部门、…...

vscode利用ofExtensions插件可以调试单进程Openfoam,但是不能调试mpi多进程案例

问题&#xff1a; 准备调试流固耦合案例&#xff0c;包括流体和固体的&#xff0c;但是用ofextensions插件。但是流体的话使用的是域分解方法&#xff0c;将大的单元分成了小的单元用mpi并行处理&#xff0c;里面的program必须输入"/usr/bin/mpirun", // 这里改为使…...

2022年计算机网络408考研真题解析

第一题&#xff1a; 解析&#xff1a;网络体系结构-数据链路层 在ISO网络参考模型中&#xff0c;运输层&#xff0c;网络层和数据链路层都实现了流量的控制功能&#xff0c;其中运输层实现的是端到端的流量控制&#xff0c;网络层实现的是整个网络的流量控制&#xff0c;数据链…...