当前位置: 首页 > news >正文

深入解析 StarRocks 物化视图:全方位的查询改写机制

小编导读:

本文将重点介绍如何利用物化视图进行查询改写。文章将全面介绍物化视图的基本原理、关键特性、应用案例、使用场景、代码细节以及主流大数据产品的物化视图改写能力对比。

物化视图在 StarRocks 中扮演着至关重要的角色,它是进行数据建模和加速查询的神器。特别是在 BI 场景中,通过预先计算 Join 和 Aggregation 操作,物化视图不仅能大幅度提升查询性能,还能显著降低存储成本。

使用物化视图通常包含以下三个阶段:

  1. 设计与创建:首先,我们需要仔细分析查询的特点,以选择构建最适合的物化视图。

  2. 视图维护:当基础表的数据发生变化时,物化视图也需要及时更新,以确保数据的一致性。

  3. 查询改写:利用预计算的数据,物化视图能有效地加速查询处理过程,提供更快的响应速度。

本文重点讨论物化视图的第三阶段:如何利用物化视图进行查询改写。StarRocks 的异步物化视图采用了广泛认可的 SPJG(Select-Projection-Join-Groupby)算法。这允许系统在用户无需修改任何查询的前提下,自动将原始查询转换为对物化视图的查询。借助物化视图中预计算的结果,这种自动化的查询改写大幅降低了计算代价,从而实现了显著的查询加速。

在典型的 OLAP 标准测试集中, 通过创建物化视图可以显著提升查询性能:

  • SSB 100GB:与传统的星形模型相比,物化视图能将总体查询耗时减少至原来的 1/3。

  • TPC-H 100GB:这种技术能加速一半的查询,平均耗时降至原来的 1/5。

基本原理

(StarRocks 物化视图改写流程)

物化视图改写的关键流程如上图所示,整体上可以划分为以下三个阶段:

  1. 预处理:在 Analyzer 处理后得到的逻辑计划树的基础上,系统会识别出相关的物化视图候选集。此阶段还包括过滤掉无法用于改写的物化视图,以缩小搜索空间并确保物化视图数据的新鲜度。

  2. SPJG 物化视图改写:应用基于cost-based的 SPJG 物化视图改写规则,自动遍历搜索空间中可用于改写的子树,并尝试进行改写,并且最终会根据 Cost Model 选择最优的改写方案。

  3. 后处理:对物化视图改写后的 Plan 执行列裁剪、谓词下推、分区裁剪等优化操作,以提升改写后 Plan 的执行性能。

举例说明,对于一条具体的查询,物化视图的改写可以分为以下几个步骤处理:

  1. 预处理:

  • 分析访问表:首先分析查询涉及的基表, 根据这些基表与物化视图之间的依赖关系,识别可能有用的物化视图

  • 候选视图筛选:对于复杂的查询可能存在大量的候选物化视图,直接考虑所有视图会导致计算开销过大。因此,因此,需要根据视图的“适用性”对候选视图进行排序,并选择一个子集进行进一步分析

  • 新鲜度验证:检查候选物化视图的数据新鲜度,若物化视图数据不满足查询的要求,则抛弃这些视图

  1. TEXT 改写

  • 当查询与某个物化视图在 AST tree/语法树结构上完全一致时,可以通过文本匹配直接将查询改写为对该视图的访问

  1. SPJG 查询改写

  • SPJG 改写适用于查询与物化视图有所差异的场景,可以对物化视图进行补偿改写,提供了更大的灵活性,但实现上也更为复杂

  • 在 SQL 优化器中应用多种规则来匹配视图和查询,对所有可能的 Query Plan 进行改写,这一过程的计算开销相对较高

  • 改写后,对于产生的所有可能的改写结果,使用 Cost Model 来评估并选择最优的改写方案

  1. 后置处理

  • 对改写后的查询计划应用更多优化器规则,如列裁剪、谓词下推和分区裁剪等

select sum(lo_revenue) as lo_revenue, d_year, p_brand
from lineorder
join dates on lo_orderdate = d_datekey
join part on lo_partkey = p_partkey
join supplier on lo_suppkey = s_suppkey
where p_category = 'MFGR#12' and s_region = 'AMERICA'
group by d_year, p_brand
order by d_year, p_brand;

关键特性

除核心能力之外,StarRocks 物化视图自动改写还包括以下关键特性:

  1. 数据一致性:

  • 内部表一致性:确保物化视图改写的结果与查询原始表结果完全一致,实现强数据一致性。

  • 过期数据处理:支持配置数据过期容忍时间,适应数据频繁变更的场景,通过 staleness 改写技术应对数据变化。

  1. 复杂查询支持

  • 多表 Join 支持:支持各种类型的 join,包括 view delta join 和 join derivability rewrite 等复杂 join 场景的改写,优化大宽表查询。

  • 聚合查询加速:通过聚合改写技术加速聚合查询,提升报表查询性能。

  • 嵌套视图改写:支持嵌套物化视图改写,解决复杂查询的改写问题,扩展改写范围。

  • 复杂表达式支持:够处理包括函数调用和四则运算在内的复杂表达式,满足复杂的分析计算需求

  1. 实时数据融合

  • 新鲜数据查询加速:利用 union 改写和 TTL 功能联合使用,加速新鲜数据查询,并实现历史数据自动回查原表。

  1. 多数据源支持

  • 逻辑视图物化:允许在逻辑视图上创建物化视图,支持基于 view 建模的场景下的查询加速

  • 外部表物化视图:支持包括 Hive、Iceberg、Hudi、DeltaLake、Paimon、JDBC(MySQL Dialet)等,提升数据湖场景下的查询性能

应用案例

在携程的 BI 平台中,通过 StarRocks MV 实现了几方面的性能加速:

  • Projection MV:在 Hive Table 基础上创建 Projection MV,发挥 StarRocks 内表和存储引擎的性能,使得关键报表能够获得几倍的性能加速。由于 StarRocks MV 能够支持 Hive Table 的自动刷新,一次创建后几乎不需要后续的维护,从而大幅降低 ETL 的维护成本

  • 嵌套视图:在 MV 的基础上,对复杂查询创建嵌套视图,以进一步加速关键报表查询。这些查询通常涉及 BI 场景中的典型操作,如 Join、Aggregation、多层聚合等复杂查询。

  • AutoMV:利用 AutoMV 能力,分析慢查询自动推荐出合适的物化视图,从而进一步减少了人工维护成本。

使用场景

Join Rewrite

StarRocks 支持 join 查询改写,支持的 join 类型包括:Inner join/cross join/left outer join/full outer join/right outer join/semi join/anti join。

下面是一个 join mv 改写的例子,建表如下:

CREATE TABLE `customer` (`c_custkey` int(11) NOT NULL COMMENT "",`c_name` varchar(26) NOT NULL COMMENT "",`c_address` varchar(41) NOT NULL COMMENT "",`c_city` varchar(11) NOT NULL COMMENT "",`c_nation` varchar(16) NOT NULL COMMENT "",`c_region` varchar(13) NOT NULL COMMENT "",`c_phone` varchar(16) NOT NULL COMMENT "",`c_mktsegment` varchar(11) NOT NULL COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(`c_custkey`)
COMMENT "OLAP"
DISTRIBUTED BY HASH(`c_custkey`) BUCKETS 12
PROPERTIES (
"replication_num" = "1"
);CREATE TABLE `lineorder` (`lo_orderkey` int(11) NOT NULL COMMENT "",`lo_linenumber` int(11) NOT NULL COMMENT "",`lo_custkey` int(11) NOT NULL COMMENT "",`lo_partkey` int(11) NOT NULL COMMENT "",`lo_suppkey` int(11) NOT NULL COMMENT "",`lo_orderdate` int(11) NOT NULL COMMENT "",`lo_orderpriority` varchar(16) NOT NULL COMMENT "",`lo_shippriority` int(11) NOT NULL COMMENT "",`lo_quantity` int(11) NOT NULL COMMENT "",`lo_extendedprice` int(11) NOT NULL COMMENT "",`lo_ordtotalprice` int(11) NOT NULL COMMENT "",`lo_discount` int(11) NOT NULL COMMENT "",`lo_revenue` int(11) NOT NULL COMMENT "",`lo_supplycost` int(11) NOT NULL COMMENT "",`lo_tax` int(11) NOT NULL COMMENT "",`lo_commitdate` int(11) NOT NULL COMMENT "",`lo_shipmode` varchar(11) NOT NULL COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(`lo_orderkey`)
COMMENT "OLAP"
DISTRIBUTED BY HASH(`lo_orderkey`) BUCKETS 48
PROPERTIES (
"replication_num" = "1"
);

基于上述的表,构建物化视图

-- MV
create materialized view join_mv1
distributed by hash(`lo_orderkey`)
as
select lo_orderkey, lo_linenumber, lo_revenue, lo_partkey, c_name, c_address
from lineorder inner join customer
on lo_custkey = c_custkey;

则如下的查询可以被改写为查询join_mv1:

-- Query
select lo_orderkey, lo_linenumber, lo_revenue, c_name, c_address
from lineorder inner join customer
on lo_custkey = c_custkey;

在 join 中,select 中支持复杂表达式改写,比如四则运算,string 函数,日期函数处理,case when 表达式,or 谓词等等。

select lo_orderkey, lo_linenumber, (2 * lo_revenue + 1) * lo_linenumber, upper(c_name), substr(c_address, 3)
from lineorder inner join customer
on lo_custkey = c_custkey;

上述的 join 改写场景是 Query 的 join 类型和表集合同 MV 相同的场景,StarRocks 中还扩展支持了以下几种 join 场景的改写。

1.1 Query delta join rewrite

query delta join 就是指查询的 join 表是物化视图中 join 表的超集场景。比如如下 query 是 lineorder/customer/part三表 join,join_mv1 只有 lineorder/customer 两表 join,StarRocks 支持将 query 改写到 join_mv1。

select lo_orderkey, lo_linenumber, lo_revenue, c_name, c_address, p_name
fromlineorder inner join customer on lo_custkey = c_custkeyinner join part on lo_partkey = p_partkey 

改写之后的 plan 如下:

1.2 View delta join rewrite

View delta join 指的是在查询中,涉及的 join 表是物化视图中 join 表的子集。这种场景的改写能力通常适用于大宽表查询。例如,在 SSB 场景中,可以构建一个包含所有表的物化视图,将多个表 join 成一个大宽表。这样,所有 SSB 查询都可以通过物化视图的透明改写来提升查询性能。测试结果表明,通过物化视图改写后的多表 join 查询,其性能可达到直接查询大宽表的水平。

为了实现 view delta join 的改写,要求物化视图中的 join 必须与查询中的 join 具有1:1的 cardinality preservation(基数保持)关系。以下是 SSB 改写的示例。在满足下列的 join 条件时,都可以进行 cardinality preservation join 改写。任何满足其中一种条件的 join,都能够进行 view delta join 的改写。

在 StarRocks 中, 可以用以下语法指定主外键关系:

CREATE TABLE `customer` (...) 
PROPERTIES ("unique_constraints" = "c_custkey" #指定唯一键
);CREATE TABLE `lineorder` (...) 
PROPERTIES ("foreign_key_constraints" = "(lo_custkey) REFERENCES customer(c_custkey);(lo_partkey) REFERENCES part(p_partkey);(lo_suppkey) REFERENCES supplier(s_suppkey)" #指定外键约束
);

对于 SSB 中的 Query,往往不会查询 MV 的所有表,但是通过指定了主外键关系,仍然能够利用物化视图改写加速,以其中一个查询为例:

--MV
CREATE MATERIALIZED VIEW lineorder_flat_mv
DISTRIBUTED BY HASH(LO_ORDERDATE, LO_ORDERKEY) BUCKETS 48
partition by LO_ORDERDATE
REFRESH manual
PROPERTIES ("replication_num" = "1"
)
AS SELECT*FROM lineorder AS lINNER JOIN customer AS c ON c.C_CUSTKEY = l.LO_CUSTKEYINNER JOIN supplier AS s ON s.S_SUPPKEY = l.LO_SUPPKEYINNER JOIN part AS p ON p.P_PARTKEY = l.LO_PARTKEYINNER JOIN dates AS d ON l.LO_ORDERDATE = d.D_DATEKEY;    
-- Query
select sum(lo_revenue) as lo_revenue, d_year, p_brand
from lineorder
join dates on lo_orderdate = d_datekey
join part on lo_partkey = p_partkey
join supplier on lo_suppkey = s_suppkey
where p_category = 'MFGR#12' and s_region = 'AMERICA'
group by d_year, p_brand
order by d_year, p_brand;

1.3 Join derivability rewrite

Join 派生改写是在物化视图(MV)的 JOIN 类型与查询(query)不一致,但 MV 的结果包含查询的结果时,进行的改写,例如 MV 使用了 OUTER JOIN,而查询是 INNER JOIN。目前分为以下两种情况:

  1. 两表 join 的情况:此时会枚举所有 JOIN 顺序和多种 JOIN 方式,检查 INNER/SEMI/ANTI/OUTER 之间是否兼容,在兼容的情况下仍然能够进行改写

  2. 三表或三表以上的 join:多表时无法枚举所有可能性,因此只做相对严格的兼容性检查

举个例子,MV 使用了 OUTER JOIN,而 Query 是 INNER JOIN, 直接改写会导致结果中包含 NULL,此时 StarRocks 会补偿一个谓词 IS NOT NULL 去保证结果的正确性。

-- MV
create materialized view join_mv3 
distributed by hash(`lo_orderkey`)
as
select lo_orderkey, lo_linenumber, c_name, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder 
left join customer
on lo_custkey = c_custkey
group by lo_orderkey, lo_linenumber, c_name;-- Query
select lo_orderkey, lo_linenumber, c_name, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder 
join customer
on lo_custkey = c_custkey
group by lo_orderkey, lo_linenumber, c_name;

Aggregation Rewrite

支持多表聚合查询的改写,并且支持所有的聚合函数,其中包括 bitmap_union/hll_union/percentile_union 等。

-- MV
create materialized view agg_mv1
distributed by hash(`lo_orderkey`)
as
select lo_orderkey, lo_linenumber, c_name, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder inner join customer
on lo_custkey = c_custkey
group by lo_orderkey, lo_linenumber, c_name;

如下查询可被 agg_mv1 改写

-- Query
select lo_orderkey, lo_linenumber, c_name, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder inner join customer
on lo_custkey = c_custkey
group by lo_orderkey, lo_linenumber, c_name;

除此最基础的场景之外, 还有一些扩展的场景。

2.1 Rollup

同时,支持聚合物化视图的上卷改写,例如当查询中的 GROUP BY 比 MV 的 GROUP BY 更少时,能够一定程度上服用 MV 的结果,但是仍然需要做二次聚合,才能得到最终结果:

2.2 Count distinct

Count distinct 计算一般应用于精确去重的场景。与普通的聚合不同在于,它通常无法利用上卷进行改写。

但是 StarRocks 支持通过 bitmap 来实现 count distinct 改写,进而实现基于物化视图的高性能精确去重:

  • 创建物化视图时,使用 bitmap_union(to_bitmap(lo_custkey))

  • 查询时,仍然使用普通的 count(distinct lo_custkey) 即可

-- MV
create materialized view distinct_mv
distributed by hash(`lo_orderkey`)
as
select lo_orderkey, bitmap_union(to_bitmap(lo_custkey)) as distinct_customer
from lineorder
group by lo_orderkey;-- Query
select lo_orderkey, count(distinct lo_custkey) from lineorder group by lo_orderkey;

Nested mv rewrite

StarRocks 支持嵌套物化视图改写。比如有如下三个物化视图,agg_mv2 是基于物化视图 join_mv2 之上构建的物化视图;agg_mv3 是基于 agg_mv2 之上构建的物化视图。通过这种方式,能够有效处理复杂的多层子查询。

Union rewrite

Union Rewrite 指的是物化视图的数据是查询的子集,仍然能够进行改写:

  • Partial Predicate:MV 谓词范围是查询的子集,此时会将差集回原表查询,再 UNION 起来

  • Partial Partition:MV 只物化了部分 Partition,此时其余的 Partition 回原表查询

4.1 Partial predicate

例如 MV 中有谓词 where lo_orderkey < 300000000

-- MV
create materialized view agg_mv4
distributed by hash(`lo_orderkey`)
as
select lo_orderkey, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder
where lo_orderkey < 300000000
group by lo_orderkey;

则如下的查询会被改写:其中,agg_mv5 包含 lo_orderkey < 300000000 的数据,lo_orderkey >= 300000000 的数据通过直接读取lineorder表进行计算,最终通过union之后再聚合,获取最终结果。

-- Query
select lo_orderkey, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder
group by lo_orderkey;

4.2 Partial partition

针对分区表来说,如果基于分区表构建分区物化视图,查询的分区范围是物化视图的最新分区范围的超集,查询会被 union 改写。

比如,有如下的物化视图, base 表 lineorder 的目前包含 p1-p7 分区,物化视图目前也包括 p1-p7 分区。

-- MV
create materialized view agg_mv5
distributed by hash(`lo_orderkey`)
partition by range(`lo_orderdate`)
refresh manual
as
select lo_orderdate, lo_orderkey, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder
group by lo_orderkey;

如果 lineorder 新增一个 p8 分区,分区范围是[("19990101"), ("20000101")),则下面的查询会被改写为 union:

-- Query
select lo_orderdate, lo_orderkey, sum(lo_revenue) as total_revenue, max(lo_discount) as max_discount 
from lineorder
group by lo_orderkey;

其中,agg_mv5 包含 p1-p7 分区的数据,p8 分区的数据通过直接读取 lineorder 表进行计算,最终通过 union 之后再聚合,获取最终结果。

MV on views

支持从 view 上创建 MV,并且查询 view 的时候能够实现透明改写。在查询改写时会有两种方式:

  • VIEW 展开:内联整个 VIEW,当做普通的 QUERY 改写

  • VIEW 独立:将 VIEW 作为独立的算子,不考虑内容,再进行改写

比如有如下的 view

-- View
create view customer_view1 as
select c_custkey, c_name, c_address
from customer;-- View
create view lineorder_view1 as
select lo_orderkey, lo_linenumber, lo_custkey, lo_revenue
from lineorder;

则可以构建如下的物化视图,在改写的时候,MV 上的 view 会被自动展开到 view 引用的 base 表上,然后进行透明匹配改写。

-- MV
create materialized view join_mv1
distributed by hash(`lo_orderkey`)
as
select lo_orderkey, lo_linenumber, lo_revenue, c_name
from lineorder_view1 inner join customer_view1
on lo_custkey = c_custkey;

MV on External catalog

StarRocks 支持在 Hive/Hudi/Iceberg/Paimon/DeltaLake/JDBC 外表上构建物化视图,并且能够进行透明改写。上述所有的改写能力大部分在外表物化视图中都支持,具体支持程度可参考使用文档。

StarRocks 在物化视图改写上,目前还有如下限制:

  1. 不支持非确定性函数的改写,包括RAND/RANDOM/UUID/SLEEP等

  2. 在SPJG改写模式下,不支持窗口分析函数的改写;基于文本的改写,不受这个限制

  3. 在SPJG改写模式下,如果mv定义语句中包含limit/order by/union/except/intersect/minus/grouping sets/with cube/with rollup,则无法用于改写;基于文本的改写,不受这个限制

  4. 部分外表(Hudi/DeltaLake)上还不支持查询结果的强一致

能力对比

以下列出主流大数据产品在物化视图上的改写能力:

图片

总结

本文主要介绍了 StarRocks 中物化视图查询改写的技术原理,从优化器的执行流程,到对不同查询的处理 Join、Aggregation、View、Union 等,以及内部视角的反省和外部视角的对比。希望本文能够对关心技术原理的读者有所帮助,对 StarRocks 的用户带来更多的技术洞察和业务启发

参考文献:

  1. Optimizing Queries Using Materialized Views: A Practical, Scalable Solution

  2. Materialized view in Apache calcite: https://calcite.apache.org/docs/materialized_views.html

  3. Oracle:https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dwhsg/advanced-query-rewrite-materialized-views.html#GUID-0906CA6B-7EE3-42E1-A598-C6541BCD9B36

延伸阅读:

StarRocks 物化视图:指标平台性能提升的新引擎

重新定义物化视图,你必须拥有的极速湖仓神器!

QPS 提升 10 倍!滴滴借助 StarRocks 物化视图实现低成本精确去重

StarRocks 技术内幕 | 多表物化视图的设计与实现

更多交流,联系我们:StarRocks

相关文章:

深入解析 StarRocks 物化视图:全方位的查询改写机制

小编导读&#xff1a; 本文将重点介绍如何利用物化视图进行查询改写。文章将全面介绍物化视图的基本原理、关键特性、应用案例、使用场景、代码细节以及主流大数据产品的物化视图改写能力对比。 物化视图在 StarRocks 中扮演着至关重要的角色&#xff0c;它是进行数据建模和加速…...

k8s常见问题及debug

ERROR1 ErrImagePull pod pending 外网无法方位集群服务 kubectl 命令失败 Pod Error 进入容器失败 pod重启 Running not ready CrashLoopBackOff PV/PVC helm install...

Winnows基础(2)

Target 了解常见端口及服务&#xff0c;熟练cmd命令&#xff0c;编写简单的 .bat 病毒程序。 Trail 常见服务及端口 80 web 80-89 可能是web 443 ssl心脏滴血漏洞以及一些web漏洞测试 445 smb 1433 mssql 1521 oracle 2082/2083 cpanel主机管理系统登陆&#xff08;国外用的…...

(14)D-FINE网络,爆锤yolo系列

yolo过时了&#xff1f;传统的yolo算法在小目标检测方面总是不行&#xff0c;最新算法DEIM爆锤yolo&#xff0c;已经替yolo解决。 一、创新点 ​ 这个算法名为DEIM&#xff0c;全称是DETR with Improved Matching for Fast Convergence&#xff0c;其主要创新点在于提出了一…...

关于数据流图绘制和使用上的一些个人经验

假设我们需要开发一个项目进度管理系统&#xff0c;在这个项目进度管理系统之中&#xff0c;我们需要开发一个功能&#xff1a;项目成员的列表。我们具有这样的业务需求&#xff1a; 在项目进度管理系统中&#xff0c;我们需要知道参与项目的人员到底有哪些&#xff0c;并且项目…...

Leetcode Hot 100 【二叉树】104. 二叉树的最大深度

104. 二叉树的最大深度 已解答 简单 相关标签 相关企业 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3…...

雅思真题短语梳理(八)

126员工流动率高 high staff turnover 127(多)负担一些工作任务 cover some duties / an increased workload 128不满 feel upset and resentful 129偏向性待遇 preferential treatment 130介入帮忙 step in and help 131切实的好处 tangible benefits 132挽留 staff retention…...

Codeforces Round 993 (Div. 4)个人训练记录

Codeforces Round 993 (Div. 4) 只选择对我有价值的题目记录 E. Insane Problem 题目描述 给定五个整数 k k k&#xff0c; l 1 l_1 l1​&#xff0c; r 1 r_1 r1​&#xff0c; l 2 l_2 l2​ 和 r 2 r_2 r2​&#xff0c;Wave 希望你帮助她计算满足以下所有条件的有序对 …...

java-io流

根据流的方向&#xff1a; 输入流&#xff08;InputStream/Reader&#xff09;&#xff1a;从数据源读取数据到程序中。输出流&#xff08;OutputStream/Writer&#xff09;&#xff1a;将数据从程序写入到目的地。 根据流处理信息的大小&#xff1a; 字节流&#xff08;Byte S…...

数据可视化

数据可视化 数据可视化 数据可视化主要目的&#xff1a;借助于图形化手段&#xff0c;清晰有效地传达与沟通信息。数据可视化可以把冰冷的数字转换成图形&#xff0c;揭示蕴含在数据中的规律和道理。 常用的数据可视化库&#xff1a; D3.js 目前 Web 端评价最高的 Javascri…...

CompletableFuture使用详解

一、 CompletableFuture介绍 平时多线程开发一般就是使用Runnable&#xff0c;Callable&#xff0c;Thread&#xff0c;FutureTask&#xff0c;ThreadPoolExecutor这些内容和并发编程息息相关。相对来对来说成本都不高&#xff0c;多多使用是可以熟悉这些内容。这些内容组合在…...

【长期有效】短链接生成-短链接-短网址-短链接生成接口-短链接转换接口-短网址URL生成-短链接-短网址-短域名-短链接

短链接API接口的作用主要体现在以下几个方面&#xff1a; 一、链接缩短与分享优化 短链接API接口的主要功能是将长链接转换为短链接。这种转换使得链接更加简洁、易读和易分享&#xff0c;尤其在社交媒体、电子邮件、短信等字符受限或按字符计费的场合中&#xff0c;短链接能…...

使用Idea自带的git功能进行分支合并

文章目录 1.背景描述2.分支切换3.分支合并的具体操作4.将在local环境下&#xff0c;从dev合并到qas分支上的代码&#xff0c;推送到远端 1.背景描述 目前在开发的当前项目有四个分支&#xff0c;master(主分支)、pre(预生产分支)、qas(测试分支)、dev(开发分支)&#xff1b; …...

工业摄像机基于电荷耦合器件的相机

工业摄像机系列产品及其识别技术的详细介绍&#xff1a; 一、工业摄像机概述 工业摄像机是利用光学成像技术获取视觉信息&#xff0c;并通过图像处理算法分析这些信息的设备。它通常具有高图像稳定性、高传输能力和高抗干扰能力等特性&#xff0c;适用于各种复杂的工业环境。 …...

【期末大作业】使用Python熟练掌握面向对象

引言 在编程学习过程中&#xff0c;构建项目是一个非常有效的方式&#xff0c;不仅能巩固和应用所学的知识&#xff0c;还能通过实践来解决实际问题。本文将通过几个经典的项目示例来展示如何用面向对象的方式设计和实现一个完整的系统&#xff0c;包括学生成绩管理系统、图书…...

JAVA:代理模式(Proxy Pattern)的技术指南

1、简述 代理模式(Proxy Pattern)是一种结构型设计模式,用于为其他对象提供一种代理,以控制对这个对象的访问。通过代理模式,我们可以在不修改目标对象代码的情况下扩展功能,满足特定的需求。 设计模式样例:https://gitee.com/lhdxhl/design-pattern-example.git 2、什…...

【MAC】深入浅出 Homebrew 下 Nginx 的安装与配置指南

硬件&#xff1a;Apple M4 Pro 16寸 系统&#xff1a; macos Sonoma 15.1.1 Nginx 是一款高性能的 Web 服务器和反向代理服务器&#xff0c;广泛应用于全球各地的网站和企业应用中。本文将详细介绍如何在 macOS 环境下使用 Homebrew 安装、启动、管理以及优化配置 Nginx&#x…...

【华为OD-E卷-寻找关键钥匙 100分(python、java、c++、js、c)】

【华为OD-E卷-寻找关键钥匙 100分&#xff08;python、java、c、js、c&#xff09;】 题目 小强正在参加《密室逃生》游戏&#xff0c;当前关卡要求找到符合给定 密码K&#xff08;升序的不重复小写字母组成&#xff09; 的箱子&#xff0c;并给出箱子编号&#xff0c;箱子编…...

SQL MID()

SQL中的MID()函数是一个用于从指定位置开始截取字符串中指定长度的子串的函数。这个函数在数据库查询和数据处理中经常被使用&#xff0c;特别是在需要从较长的文本字段中提取特定信息时。 MID()函数的基本语法是&#xff1a;SELECT MID(column_name, start, length) FROM tab…...

Sui 基金会任命 Christian Thompson 为新任负责人

Sui 基金会是专注于推动 Sui 蓬勃发展的生态增长与采用的机构。近日&#xff0c;基金会宣布任命 Christian Thompson 为新任负责人。在 Sui 主网发布的开创性一年里&#xff0c;Sui 凭借其无与伦比的速度、可扩展性和效率&#xff0c;迅速崛起为领先的 Layer 1 区块链之一&…...

ViEW生命周期

Vue的生命周期是指Vue实例从创建到销毁的整个过程&#xff0c;包括多个阶段和对应的钩子函数。以下是Vue生命周期的详细说明&#xff1a; 1. **创建阶段**&#xff1a; - beforeCreate&#xff1a;在实例初始化之前调用&#xff0c;此时数据观测和事件配置尚未完成&#xff0c;…...

[蓝桥杯 2019 国 B] 排列数

目录 前言 题解 思路 疑问 解答 前言 对于本篇文章是站在别人的基础之上来写的&#xff0c;对于这道题作为2019年国赛B组的最难的一题&#xff0c;他的难度肯定是不小的&#xff0c;这道题我再一开始接触的时候连思路都没有&#xff0c;也是看了两三遍别人发的题解&#x…...

python 中执行from elasticsearch import Elasticsearch,AsyncElasticsearch 报错

在 Python 中执行 from elasticsearch import Elasticsearch, AsyncElasticsearch 时,如果提示 AsyncElasticsearch 不存在,可能是因为以下几个原因: 1. 安装的 elasticsearch 库版本不匹配 AsyncElasticsearch 是在 elasticsearch 库的较新版本中引入的。如果你安装的版本…...

git 删除鉴权缓存及账号信息

在Windows系统下 清除凭证管理器中的Git凭据 按下Win R键&#xff0c;打开“运行”对话框&#xff0c;输入control&#xff0c;然后回车&#xff0c;打开控制面板。在控制面板中找到“用户账户”&#xff0c;然后点击“凭据管理器”。在凭据管理器中&#xff0c;找到“Windows…...

浏览器要求用户确认 Cookies Privacy(隐私相关内容)是基于隐私法规的要求,VUE 实现,html 代码

Cookie Notices and Cookie Consent | Cookiepedia 1. 法律法规要求 许多国家和地区的隐私法律要求网站在存储或处理用户数据&#xff08;包括 Cookies&#xff09;之前必须获得用户的明确同意&#xff1a; GDPR&#xff08;欧盟通用数据保护条例&#xff09; 要求&#xff…...

数据结构:栈和队列的实现

栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除操作的一端 称为栈顶&#xff0c;另一端称为栈底。 栈中的数据元素遵守后进先出 LIFO &#xff08; Last In First Out &#xff09;的原则。 压栈&#xff1a;栈…...

2024.12.21辩论赛感受

背景 今天辩论赛的双方论点是&#xff1a; 正方&#xff1a;寒假留在研发中心的收获大 反方&#xff1a;寒假去做其他事情的收获 辩论赛&#xff0c;为了锻炼自己&#xff0c;选择了不想选择以及相对不好辩论的反方。出现的状况有一下几点&#xff1a; 1.发现自己脑子完全跟不…...

JAVA:组合模式(Composite Pattern)的技术指南

1、简述 组合模式(Composite Pattern)是一种结构型设计模式,旨在将对象组合成树形结构以表示“部分-整体”的层次结构。它使客户端对单个对象和组合对象的使用具有一致性。 设计模式样例:https://gitee.com/lhdxhl/design-pattern-example.git 2、什么是组合模式 组合模式…...

圣诞快乐(h5 css js(圣诞树))

一&#xff0c;整体设计思路 圣诞树h5&#xff08;简易&#xff09; 1.页面布局与样式&#xff1a; 页面使用了全屏的黑色背景&#xff0c;中央显示圣诞树&#xff0c;树形由三层绿色的三角形组成&#xff0c;每一层的大小逐渐变小。树干是一个棕色的矩形&#xff0c;位于三角…...

移植 OLLVM 到 LLVM18,修复控制流平坦化报错

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 前言 把 OLLVM 移植到 LLVM18 后&#xff0c;发现 -fla&#xff08;控制流平坦化&#xff09;并不能正常使用。 关于移植过程可以参考这篇文章 【移植 OLLVM…...

MFC/C++学习系列之简单记录——序列化机制

MFC/C学习系列之简单记录——序列化机制 前言简述六大机制序列化机制使用反序列化总结 前言 MFC有六大机制&#xff0c;分别是程序启动机制、窗口创建机制、动态创建机制、运行时类信息机制、消息映射机制、序列化机制。 简述六大机制 程序启动机制&#xff1a;全局的应用程序…...

【网络云计算】2024第51周-每日【2024/12/17】小测-理论-解析

文章目录 1. 计算机网络有哪些分类2. 计算机网络中协议与标准的区别3. 计算机网络拓扑有哪些结构4. 常用的网络设备有哪些&#xff0c;分属于OSI的哪一层5. IEEE802局域网标准有哪些 【网络云计算】2024第51周-每日【2024/12/17】小测-理论-解析 1. 计算机网络有哪些分类 计算…...

Python中的上下文管理器:从资源管理到自定义实现

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 Python中的上下文管理器(Context Manager)为资源管理提供了强大的支持,尤其在处理文件、网络连接、数据库连接等需要精确控制生命周期的…...

STM32 高级 物联网通信之CAN通讯

目录 CAN通讯介绍 物理层 协议层 CAN的帧(报文)种类 1 数据帧(发送单元->接受单元) 2 远程帧(接受单元->发送单元) 3 错误帧(发送方发送数据错误会发送的状态帧) 4 过载帧(接收方放不下会发送到的状态帧) 5 帧间隔(状态) 数据帧介绍 远程帧介绍 C…...

如何求解小于等于x的正整数因子y的个数总和

G ( X , Y ) X 的因子 Y 个数 G(X,Y) X的因子Y个数 G(X,Y)X的因子Y个数 例如 G ( 8 , 2 ) 3 G(8,2)3 G(8,2)3 G ( 12 , 2 ) 2 G(12,2)2 G(12,2)2 F ( X , Y ) ∑ i 1 X G ( i ) F(X, Y) \sum_{i1}^{X} G(i) F(X,Y)i1∑X​G(i) 直接上结论 F ( X , Y ) X Y 1 ⋯ X…...

Epic游戏使用mod

以土豆兄弟为例&#xff1a; 第一步&#xff1a;获取 SteamCMD 下载官方 Steam 控制台客户端 (steamCMD) 1. 下载好后打开&#xff0c;是一个在 cmd 窗口的运行的命令行 2. 输入以下代码登录 login anonymous 第二步&#xff1a; 确认自己要下载的游戏 ID 和 mod ID 然后…...

前端:纯前端快速实现html导出word和pdf

实现html导出word&#xff0c;需要使用两个库。 html-docx-js和file-saver 导出word的js方法 > npm install html-docx-js >npm install file-saver js引入 import FileSaver from “file-saver”; import htmlDocx from “html-docx-js/dist/html-docx”; /**导出…...

Windows装Docker至D盘/其他盘(最新,最准确,直接装)

前言 Docker的默认安装路径为 C:\你的用户名\AppData\Local\Docker\wsl这样安装常常会导致C盘爆满。目前现有博客的安装方法往往不能把docker的container和image也装在非C盘。本博客旨在用最简单的方式&#xff0c;把Docker Deskstop的images和container装在D盘中。 安装前&a…...

2024 年 IA 技术大爆发深度解析

摘要&#xff1a; 本文旨在深入剖析 2024 年 IA 技术大爆发所引发的多方面反响。通过对产业变革、经济影响、就业市场、社会影响、政策与监管以及未来展望等维度的探讨&#xff0c;揭示 IA 技术在这一关键时期对全球各个层面带来的深刻变革与挑战&#xff0c;并提出相应的思考与…...

现代 CSS 布局与响应式设计实战指南

作为一名前端开发者&#xff0c;我经常被问到&#xff1a;"为什么你的页面布局这么流畅&#xff1f;响应式适配这么完美&#xff1f;"今天&#xff0c;我就来分享一下在实际项目中常用的 CSS 布局技巧和响应式设计方案。 现代布局三剑客&#xff1a;Flex、Grid 和 C…...

react 项目打包二级目 使用BrowserRouter 解决页面刷新404 找不到路由

使用BrowserRouter package 配置 &#xff08;这部分代码可以不做配置也能实现&#xff09; {"homepage": "/admin",}vite.config 配置 export default defineConfig({base: /admin])BrowserRouter 添加配置项 <BrowserRouter basename/admin>&l…...

Yolo11改进策略:Block改进|使用FastVit的RepMixerBlock改进Yolo11,重参数重构助力Yolo11涨点(全网首发)

文章目录 摘要FastViT:一种使用结构重新参数化的快速混合视觉变换器1、简介2、相关工作3、体系结构3.1、概述3.2、FastViT3.2.1、重新参数化跳过连接3.2.2、线性训练时间过参数化3.2.3、大核卷积4、实验4.1、图像分类4.2、鲁棒性评价4.3、3D Hand网格估计4.4、语义分割和目标检…...

2.6 网络面试问题

tcp 与 udp的区别 1.tcp 是基于连接的 UDP是基于数据包 2.处理并发的方式不通 a.tcp用epoll进行监听的 b. udp是模拟tcp的连接过程&#xff0c;服务端开放一个IP端口&#xff0c;收到连接后&#xff0c;服务端用另一个IP和端口发包给客户端。 3.tcp根据协议MTU黏包及…...

02-10.python入门基础一Python模块与包(二)

五、Python 包的概念 &#xff08;一&#xff09;包的定义与结构 在 Python 中&#xff0c;“包”&#xff08;Package&#xff09;是一种按照目录来组织模块的方式&#xff0c;它允许开发者将相关的模块集合在一起&#xff0c;形成一个更具逻辑性和结构性的代码单元。 从物…...

[WiFi] WiFi 802.1x介绍及EAP认证流程整理

802.1X Wi-Fi 802.1X 是一种网络访问控制协议&#xff0c;常用于保护无线网络。它提供了一种基于端口的网络访问控制机制&#xff0c;主要用于在用户和网络之间建立安全的连接。以下是 802.1X 的一些关键特点&#xff1a; 认证框架 802.1X 使用 EAP&#xff08;可扩展认证协议…...

前端通过new Blob下载文档流(下载zip或excel)

当后端返回这样的预览&#xff1a; 前端该如何下载呢&#xff1f;首先在axios请求里&#xff0c;加入第三个参数{ responseType: ‘blob’ }。 proxy.$post(url, params, { responseType: blob }).then((res)>{downloadFormat(res) });然后在一个函数里处理返回&#xff0c…...

R 常用的内置软件包及功能介绍

R 中有许多内置包&#xff0c;提供了丰富的功能来帮助用户进行数据分析、统计建模、图形可视化等任务。以下是一些常用的内置包及其功能简介&#xff1a; 1. stats 包 stats 是 R 的一个核心包&#xff0c;几乎每个 R 用户都会使用它。它包含了许多统计分析的函数&#xff0c…...

基于 HC_SR04的超声波测距数码管显示(智能小车超声波避障部分)

超声波测距模块HC-SR04 1、产品特色 ①典型工作用电压&#xff1a;5V ②超小静态工作电流&#xff1a;小于 5mA ③感应角度(R3 电阻越大,增益越高,探测角度越大)&#xff1a; R3 电阻为 392,不大于 15 度 R3 电阻为 472, 不大于 30 度 ④探测距离(R3 电阻可调节增益,即调节探测…...

12月第十九讲:Redis应用Redis相关解决方案

1.数据库与缓存一致性方案 2.热key探测系统处理热key问题 3.缓存大value监控和切分处理方案 4.Redis内存不足强制回收监控告警方案 5.Redis集群缓存雪崩自动探测 限流降级方案 6.缓存击穿的解决方法 线上Redis比较严重的问题排序是&#xff1a;数据库和缓存一致性、热key…...

solon 集成 activemq-client (sdk)

原始状态的 activemq-client sdk 集成非常方便&#xff0c;也更适合定制。就是有些同学&#xff0c;可能对原始接口会比较陌生&#xff0c;会希望有个具体的示例。 <dependency><groupId>org.apache.activemq</groupId><artifactId>activemq-client&l…...