当前位置: 首页 > news >正文

机器学习06-RNN

RNN(循环神经网络)学习笔记

一、RNN 概述

  • 循环神经网络(Recurrent Neural Network,RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络。与传统神经网络不同,RNN 具有记忆功能,能够对序列信息进行建模,适用于处理自然语言处理、时间序列预测等具有时间依赖关系的数据。

二、RNN 的基本结构

  • RNN 的基本单元是循环神经元,其结构包含输入门、遗忘门和输出门(在某些变体中如 LSTM)。一个典型的 RNN 结构由输入层、隐藏层和输出层组成。隐藏层的神经元之间存在循环连接,使得网络能够将之前时刻的信息传递到当前时刻,从而对序列中的历史信息进行利用。

三、RNN 的工作原理

  • 在每个时间步 t,RNN 接收当前时刻的输入向量 [x_t] 以及上一时刻的隐藏状态 [h_{t-1}],通过激活函数(如 tanh 或 sigmoid)计算出当前时刻的隐藏状态 [h_t],然后再根据 [h_t] 计算出输出 [y_t]。这个过程可以表示为:
    • [h_t] = f(W * [x_t] + U * [h_{t-1}] + b)
    • [y_t] = softmax(V * [h_t] + c)
    • 其中,W、U、V 是网络的权重矩阵,b、c 是偏置项,f 是激活函数。

四、RNN 的训练难点

  • 梯度消失与梯度爆炸问题 :在 RNN 的反向传播过程中,由于循环结构的存在,梯度在时间序列上不断回传,可能会导致梯度变得非常小(梯度消失),使得网络无法有效更新权重,学习速度变慢;或者梯度变得非常大(梯度爆炸),导致权重更新幅度过大,网络无法稳定训练。例如,在处理较长序列时,早期时间步的梯度信息可能会在传播过程中逐渐消失,使得网络难以学习到长期依赖关系。
  • 长期依赖问题 :由于梯度消失现象,传统的 RNN 在处理序列中的长期依赖关系时存在困难。即使序列中存在重要的长期信息,网络可能也无法有效捕捉到,从而影响模型的性能。

五、RNN 的变体

  • LSTM(Long Short - Term Memory) :为了解决 RNN 的梯度消失和长期依赖问题,LSTM 引入了特殊的结构,包括输入门、遗忘门和输出门,以及一个细胞状态(C_t)。这些门可以控制信息的流动,决定哪些信息应该被存储、遗忘或输出,从而更好地捕捉长期依赖关系。LSTM 的结构相对复杂,但能够更有效地处理序列数据中的长期信息。
  • GRU(Gated Recurrent Unit) :GRU 是 LSTM 的一种简化变体,它将遗忘门和输入门合并为一个更新门,减少了模型的参数数量。GRU 在性能上与 LSTM 相当,但在计算效率上可能更高,因此在一些场景中得到广泛应用。

六、RNN 的应用

  • 自然语言处理(NLP) :如文本生成、机器翻译、情感分析等任务。在文本生成中,RNN 可以根据前面的文本序列预测下一个单词或字符,从而生成连贯的文本;在机器翻译中,它可以对源语言句子进行编码,然后解码生成目标语言句子。
  • 时间序列预测 :例如股票价格预测、天气预报等。通过对历史时间序列数据的学习,RNN 能够捕捉数据中的趋势、季节性和周期性等规律,从而对未来的时间点进行预测。

七、RNN 的优缺点

  • 优点

    • 能够处理序列数据,捕捉数据中的时间依赖关系,适用于多种具有序列特性的任务。
    • 具有一定的记忆功能,可以利用历史信息进行当前时刻的预测和决策。
  • 缺点

    • 训练过程可能会出现梯度消失和梯度爆炸问题,影响模型的训练效果和学习速度。
    • 对于较长的序列,传统的 RNN 可能难以有效处理长期依赖关系,尽管有 LSTM 和 GRU 等变体,但在处理超长序列时仍可能存在一定的局限性。
    • RNN 的训练和推理速度相对较慢,尤其是在处理大规模数据时,因为每个时间步的计算都需要依赖前一个时间步的结果,无法像卷积神经网络(CNN)那样进行并行计算。

八、总结与展望

RNN 及其变体在序列建模领域具有重要的地位和广泛的应用。尽管存在一些训练难点和局限性,但通过不断的研究和改进,如优化训练算法、设计更有效的网络结构等,RNN 的性能和适用范围得到了不断提升。随着深度学习技术的不断发展,相信 RNN 将在更多领域发挥更大的作用,并与其他技术相结合,为解决复杂的序列问题提供更强大的工具。

相关文章:

机器学习06-RNN

RNN(循环神经网络)学习笔记 一、RNN 概述 循环神经网络(Recurrent Neural Network,RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神…...

Java常用正则表达式及使用方法

在 Java 中,Pattern 和 Matcher 类是 java.util.regex 包的核心,用于处理正则表达式。 Pattern 类 Pattern 类表示编译后的正则表达式,它提供了一种将正则表达式字符串编译成可执行对象的方式,以便后续用于匹配操作。 常用方法…...

新零售行业时代:如何用科技驱动传统零售的转型升级​​

新零售行业时代:如何用科技驱动传统零售的转型升级​​ ​​“在变化的世界中,唯一不变的是变化本身。”​​ ​​一、传统零售的困局:当“生存”成为一场鏖战​​ 街角的便利店老板老王,每天凌晨4点起床进货,却在月…...

DeepSeek和Excel结合生成动态图表

文章目录 一、前言二、3D柱状图案例2.1、pyecharts可视化官网2.2、Bar3d-Bar3d_puch_card2.3、Deepseek2.4、WPS2.5、动态调整数据 一、前言 最近在找一些比较炫酷的动态图表,用于日常汇报,于是找到了 DeepseekExcel王牌组合,其等同于动态图…...

大模型学习笔记------Llama 3模型架构之分组查询注意力(GQA)

大模型学习笔记------Llama 3模型架构之分组查询注意力(GQA) 1、分组查询注意力(GQA)的动机2、 多头注意力(Multi-Head Attention, MHA)3、 多查询注意力 (Multi-Query Attention,MQA)4、 分组查…...

WordPress 只能访问html文件,不能访问php

部署WordPress 遇到的问题 说来惭愧,尝试了多次流程,输入ip能够访问到配置路径下面的html文件,但就是无法访问php文件,查来查去,最后在AI工具的逐一梳理下,是PHP-FPM配置下面出的问题,默认账号…...

Python 之 pyecharts 使用

要说绘制动态图表,echarts 肯定是有一席之地的,特别是像 flask 这种轻量级的 web 框架,在 html 中动态嵌入生成 echarts 无疑是很优的选择。pyecharts 简单来说就是以 python 的方式来生成对应的 echarts 图表。 安装 pip install pyechart…...

【第九章 Python学习之函数Ⅱ】

【2025】Python最新最完整教程,零基础看这一个就够了 第九章 Python学习之函数Ⅱ 文章目录 【2025】Python最新最完整教程,零基础看这一个就够了前言一、说两句二、定义函数函数定义规则函数的参数参数的类型及用途1. 必需参数(位置参数)2. 关键字参数3. 默认参数4. 可变参…...

传入的表格格式数据流(TDS)远程过程调用(RPC)协议流不正确。此 RPC 请求中提供了过多的参数。最多应为 2100。

### Error updating database. Cause: com.microsoft.sqlserver.jdbc.SQLServerException: 传入的表格格式数据流(TDS)远程过程调用(RPC)协议流不正确。此 RPC 请求中提供了过多的参数。最多应为 2100。 这是因为集合数据量过大,需要对集合进行拆分操作&#xff0…...

IDEA热加载

翻译:"你运行的应用程序 BfApplication 启动之后,它的一些类文件(通常是你修改过的 .java​ 文件被重新编译了)发生了变化。你想现在就重新加载这些更改过的类吗?" 解释: 热重载: 这是一种开发时非常有用的技术。当你…...

常用第三方库:dio网络库使用与封装

常用第三方库:dio网络库使用与封装 前言 dio是Flutter生态中最受欢迎的网络请求库之一,它提供了强大的功能和灵活的配置选项。本文将从实战角度深入介绍dio的使用技巧和最佳实践。 基础知识 1. dio简介 dio是一个强大的Dart Http请求库,…...

解决IntelliJ IDEA配置文件(application.properties)中文注释变成乱码的问题

文章目录 1. 问题呈现2. 问题产生的原因3. 解决方法 更多 IntelliJ IDEA 的使用技巧可查看 IntelliJ IDEA 专栏中的文章:IntelliJ IDEA 1. 问题呈现 在 IntelliJ IDEA 中打开配置文件(application.properties)时,文件中的中文注…...

linux基础14--dns和web+dns

DNS:域名系统(Domain Name System) DNS协议是用来将域名转换为IP地址或将IP地址转换为相应的域名 DNS使用TCP和UDP端口53,给用户提供解析时一般使用UDP53 对于每一级域名长度的限制是63个字符,域名总长度则不能超过2…...

Java 静态内部类面试题与高质量答案合集

本文整理了关于 Java 静态内部类(Static Nested Class)在面试中的高频问题及标准答案,帮助你理解其底层原理、内存表现以及实际应用。 1. 什么是静态内部类?和普通内部类有什么区别? 答: 静态内部类是定义…...

React.cloneElement的用法详解

React.cloneElement的用法详解 React.cloneElement 是 React 提供的一个 API&#xff0c;用于克隆现有的 React 元素&#xff0c;并在克隆的基础上添加或覆盖属性&#xff0c;同时保留原有的子元素。 语法 React.cloneElement(element: ReactElement, props?: Partial<P…...

【数学建模】孤立森林算法:异常检测的高效利器

孤立森林算法&#xff1a;异常检测的高效利器 文章目录 孤立森林算法&#xff1a;异常检测的高效利器1 引言2 孤立森林算法原理2.1 核心思想2.2 算法流程步骤一&#xff1a;构建孤立树(iTree)步骤二&#xff1a;构建孤立森林(iForest)步骤三&#xff1a;计算异常分数 3 代码实现…...

3.1 WPF使用MaterialDesign的介绍1

MaterialDesignInXAML Toolkit 是一个流行的开源 C# WPF 控件库,它实现了 Google 的 Material Design 规范,让开发者可以轻松创建现代化的 WPF 应用程序界面 Material Design 是一个流行的设计语言,由 Google 开发,旨在帮助开发者构建美观且一致的 UI 界面。对于使用 C# 的…...

多路转接select服务器

目录 select函数原型 select服务器 select的缺点 前面介绍过多路转接就是能同时等待多个文件描述符&#xff0c;这篇文章介绍一下多路转接方案中的select的使用 select函数原型 #include <sys/select.h> int select(int nfds, fd_set *readfds, fd_set *writefds, f…...

【算法】BFS-解决FloodFill问题

目录 FloodFill问题 图像渲染 岛屿数量 岛屿的最大面积 被围绕的区域 FloodFill问题 FloodFill就是洪水灌溉的意思&#xff0c;假设有下面的一块田地&#xff0c;负数代表是凹地&#xff0c;正数代表是凸地&#xff0c;数字的大小表示凹或者凸的程度。现在下一场大雨&…...

二叉树层序遍历技术解析与面试指南

文章目录 一、二叉树层序遍历技术解析1. 问题描述2. 层序遍历核心思想3. Java实现代码&#xff08;带详细注释&#xff09;4. 算法关键点解析5. 复杂度分析 二、资深后端面试深度指南1. 高频面试问题集Q1: 如何实现Z字形层序遍历&#xff08;锯齿形遍历&#xff09;&#xff1f…...

软考软件设计师考试情况与大纲概述

文章目录 **一、考试科目与形式****二、考试大纲与核心知识点****科目1&#xff1a;计算机与软件工程知识****科目2&#xff1a;软件设计** **三、备考建议****四、参考资料** 这是一个系列文章的开篇 本文对2025年软考软件设计师考试的大纲及核心内容进行了整理&#xff0c;并…...

一款丰富的工作流自动化平台 | N8N 83.6K ⭐

N8N 介绍 N8N 是一个工作流自动化平台&#xff0c;为技术团队提供代码的灵活性和无代码的速度。n8n 具有 400 集成、原生 AI 功能和公平代码许可证&#xff0c;可让您构建强大的自动化功能&#xff0c;同时保持对数据和部署的完全控制。 &#x1f6a2; 项目地址 Github: https…...

Apache PDFBox

Apache PDFBox 是一个用于处理 PDF 文档的开源 Java 库&#xff0c;由 Apache 软件基金会开发和维护。它提供了丰富的功能&#xff0c;允许开发者在 Java 应用程序中创建、读取、修改和提取 PDF 文件中的信息。以下是关于 PDFBox 的详细介绍&#xff1a; 主要功能 创建 PDF 文…...

如何批量为多个 Word 文档添加水印保护

在日常办公中&#xff0c;Word文档添加水印是一项重要的操作&#xff0c;特别是在需要保护文件内容的安全性和版权时。虽然Office自带了添加水印的功能&#xff0c;但当需要一次性给多个Word文档添加水印时&#xff0c;手动操作显得非常繁琐且低效。为了提高效率&#xff0c;可…...

【MySQL】005.MySQL表的约束(上)

文章目录 表的约束1. 约束概念2. 空属性2.1 基本语法2.2 使用示例 3. 默认值3.1 基本概念3.2 使用示例 4. 列描述4.1 基本概念4.2 使用示例 5. zerofill5.1 基本功能5.2 使用示例5.3 注意事项 6. 主键6.1 基本概念6.2 使用示例 表的约束 1. 约束概念 真正约束字段的是数据类型…...

力扣刷题Day 27:环形链表(141)

1.题目描述 2.思路 创建一个结点集合&#xff0c;遍历链表&#xff0c;如果遇到已经加进集合的结点就说明链表有环。 3.代码&#xff08;Python3&#xff09; class Solution:def hasCycle(self, head: Optional[ListNode]) -> bool:node headnode_set set()while node…...

window上 elasticsearch v9.0 与 jmeter5.6.3版本 冲突,造成es 启动失败

[2025-04-22T11:00:22,508][ERROR][o.e.b.Elasticsearch ] [AIRUY] fatal exception while booting Elasticsearchjava.nio.file.NoSuchFileException: D:\Program Files\apache-jmeter-5.6.3\lib\logkit-2.0.jar 解决方案&#xff1a; 降低 es安装版本 &#xff0c;选择…...

PDF转换Word深度评测 - ComPDFKit Conversion SDK V3.0

ComPDFKit PDF 转换 SDK 在V3.0 中有以下几个新功能: 使用百万级文档训练数据集对 PPYoloE AI 模型进行微调 全场景布局分析算法及下一代表格识别算法 重构数据结构、转换流程、PDF解析和输出模块 混合布局&#xff1a;将流式布局与固定布局相结合&#xff0c;以保持原始布局…...

Laravel 对接阿里云 OSS 说明文档

Laravel 对接阿里云 OSS 说明文档 一、 简介 将 Laravel 应用与阿里云对象存储服务 (OSS) 对接&#xff0c;可以利用 OSS 提供的高可用、高可靠、可扩展的存储能力来管理应用中的文件&#xff0c;例如用户上传的图片、视频、文档等。这有助于减轻应用服务器的存储压力&#x…...

嘻游电玩三端客户端部署实战:PC + Android + iOS 环境全覆盖教程

本篇文章将针对“网狐系列嘻游电玩组件”的三端客户端&#xff08;PC端、安卓端、iOS端&#xff09;进行详细部署实操讲解。文章将以实测部署为核心&#xff0c;提供资源结构说明、平台适配调整、打包配置、常见问题修复&#xff0c;并辅以必要的关键配置代码。 一、客户端资源…...

mockMvc构建web单元测试学习笔记

web应用本来需要依靠tomcat这个环境运行 现在用mockMvc是为了模拟这个web环境&#xff0c;简化测试 什么是mock(模拟) 模拟对象---mock object是以可控方式模拟真实对象行为的假对象&#xff0c;通过模拟输入数据&#xff0c;验证程序达到预期结果 为什么使用mock对象 因为…...

ffmpeg av_buffer_unref的逻辑实现; av_freep 和 av_freep函数的区别

av_buffer_unref 是 FFmpeg 中用于管理引用计数和内存释放的核心函数&#xff0c;其内部实现机制如下&#xff1a; ‌一、核心流程‌ ‌引用计数递减‌ 函数首先对 AVBufferRef 的 buffer->refcount 进行原子递减操作&#xff08;通过 atomic_fetch_add_explicit 等机制保证…...

Flutter IOS 真机 Widget 错误。Widget 安装后系统中没有

错误信息&#xff1a; SendProcessControlEvent:toPid: encountered an error: Error Domaincom.apple.dt.deviceprocesscontrolservice Code8 "Failed to show Widget com.xxx.xxx.ServerStatus error: Error DomainFBSOpenApplicationServiceErrorDomain Code1 "T…...

Jenkins plugin 的用法和示例

今天介绍一下比较常见的Jenkins plugin 的使用方法 1. 通过AWS s3 upload 插件上传文件到AWS S3 存储桶 前提条件&#xff1a; 安装AWS pipeline step插件在Jenkins 中创建credentials&#xff0c;包含access_key_id和secret_key_id创建S3 存储桶 脚本&#xff1a; pipeli…...

利用java语言,怎样开发和利用各种开源库和内部/自定义框架,实现“提取-转换-加载”(ETL)流程的自动化

一、ETL 架构设计的核心要素​ 在企业级数据处理场景中&#xff0c;ETL&#xff08;Extract-Transform-Load&#xff09;流程自动化是数据仓库、数据湖建设的核心环节。基于 Java 生态的技术栈&#xff0c;我们可以构建分层解耦的 ETL 架构&#xff0c;主要包含以下四层结构&am…...

人工智能在PET-CT中的应用方向探析

人工智能(AI)在正电子发射断层扫描-计算机断层扫描(PET-CT)中的应用正逐步改变医学影像诊断的格局,其核心价值体现在提升诊断效率、优化成像质量、促进精准医疗等方面。近年来,随着深度学习、计算机视觉以及多模态数据融合技术的迅猛发展,AI技术在PET-CT全流程中的渗透愈…...

pod 创建私有库指南

步骤 参考&#xff1a;iOS Pod 私有库创建指南-百度开发者中心 下面主要是对参考链接里面的解释&#xff1a; 创建两个仓库&#xff1a; 一个叫podframe.git&#xff0c;用来存放自定义的framework&#xff0c;比如TestPodFrame.framework一个叫podspec.git&#xff0c;用来…...

操作系统之shell实现(下)

&#x1f31f; 各位看官好&#xff0c;我是maomi_9526&#xff01; &#x1f30d; 种一棵树最好是十年前&#xff0c;其次是现在&#xff01; &#x1f680; 今天来学习C语言的相关知识。 &#x1f44d; 如果觉得这篇文章有帮助&#xff0c;欢迎您一键三连&#xff0c;分享给更…...

【设计模式】深入解析代理模式(委托模式):代理模式思想、静态模式和动态模式定义与区别、静态代理模式代码实现

代理模式 代理模式&#xff0c;也叫委托模式。 Spring AOP 是基于动态代理来实现 AOP 的 定义 为其他对象提供一种代理 以控制对这个对象的访问。它的作用就是通过提供一个代理类&#xff0c;让我们在调用目标方法的时候&#xff0c;不再是直接对目标方法进行调用&#xff0c;而…...

Element Plus表格组件深度解析:构建高性能企业级数据视图

一、架构设计与核心能力 Element Plus的表格组件&#xff08;el-table&#xff09;基于Vue 3的响应式系统构建&#xff0c;通过声明式配置实现复杂数据渲染。其核心设计理念体现在三个层级&#xff1a; 数据驱动&#xff1a;通过data属性绑定数据源&#xff0c;支持动态更新与…...

Mongodb分布式文件存储数据库

文章目录 一、MongoDB 简介基本信息特点内部组件 二、MongoDB 部署1. 安装依赖2. 解压部署并配置环境变量3. 修改配置文件以及启动服务4.数据库权限管理 三、MongoDB 管理1. 角色权限2. 操作命令用户管理命令常用命令&#xff08;Mongo4.2.8&#xff09;数据库相关用户相关集合…...

UML 通信图对象协作:共享汽车系统交互脉络

目录 一、通信图的定义与特点 二、通信图的构成要素 三、通信图的优势 四、通信图的实践应用 五、以共享汽车系统通信图为例 &#xff08;一&#xff09;参与者及交互起点 &#xff08;二&#xff09;预订环节交互 &#xff08;三&#xff09;支付流程交互 &#xff0…...

安宝特分享|AR智能装备赋能企业效率跃升

AR装备开启智能培训新时代 在智能制造与数字化转型浪潮下&#xff0c;传统培训体系正面临深度重构。安宝特基于工业级AR智能终端打造的培训系统&#xff0c;可助力企业构建智慧培训新生态。 AR技术在不同领域的助力 01远程指导方面 相较于传统视频教学的单向输出模式&#x…...

中间系统-基础

OSI七层模型&#xff0c;TCP/IP四层模型。 在OSI模型中我们将具有报文转发的网络节点叫做IS&#xff0c;即中间系统的意思&#xff0c;类似于TCP/IP模型中的路由器。 在OSI模型中我们将没有路由能力或者转发能力的设备叫做ES&#xff0c;即端系统的意思&#xff0c;类似于TCP/I…...

【Linux】用户权限

shell命令 1. Linux本质上是一个操作系统&#xff0c;但是一般的用户不能直接使用它&#xff0c;而是需要通过外壳程序shell&#xff0c;来与Linux内核进行沟通。 2. shell的简单定义&#xff1a;命令行解释器。主要包含以下作用&#xff1a; 将使用者的命令翻译给核心处理。将…...

晶振详解:原理、作用、种类、应用与选型要点

一、晶振的基本定义 晶振&#xff08;Crystal Oscillator&#xff09; 是利用石英晶体的压电效应产生稳定频率的电子元件&#xff0c;其核心功能是为数字系统提供高精度时钟信号。 核心公式&#xff1a; 串联谐振频率&#xff08;fs&#xff09; 1 / (2π√(L1C1)) &#xff…...

【数字图像处理】立体视觉基础(2)

相机标定 【1】相机标定的概念 相机参数&#xff1a;相机成像的几何模型的参数 相机标定&#xff1a;求解参数的过程 【2】相机标定的作用 &#xff08;1&#xff09;求出相机的内、外参数&#xff0c;以及畸变参数 &#xff08;2&#xff09;校正镜头畸变影响&#xff0c;…...

智能座舱测试内容与步骤

智能座舱的测试步骤通常包括以下环节&#xff1a; 1.测试环境搭建与准备 • 硬件需求分析&#xff1a;准备测试车辆、服务器与工作站、网络设备以及传感器和执行器模拟器等硬件设备。 • 软件需求分析&#xff1a;选择测试管理软件、自动化测试工具、模拟软件和开发调试工具等。…...

每日算法-250422

每日算法 - 250422 1561. 你可以获得的最大硬币数目 题目 思路 贪心 解题过程 根据题意&#xff0c;我们想要获得最大的硬币数目。每次选择时&#xff0c;有三堆硬币&#xff1a;最大的一堆会被 Alice 拿走&#xff0c;最小的一堆会被 Bob 拿走&#xff0c;剩下的一堆&#xf…...

XSS的应用

免责声明&#xff0c;本博客只是用来自身学习记录&#xff0c;不要运用里面的代码去进行违法犯罪行为。 XSS 首先需要知道的是xss误区&#xff0c;就是在不确定是否有XSS的情况下&#xff0c;不应该是直接上攻击payload&#xff0c;例如<script>alert(123)</script&…...